Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
IEEE J Biomed Health Inform ; 25(11): 4140-4151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375293

RESUMO

The coronavirus disease 2019 (COVID-19) has become a severe worldwide health emergency and is spreading at a rapid rate. Segmentation of COVID lesions from computed tomography (CT) scans is of great importance for supervising disease progression and further clinical treatment. As labeling COVID-19 CT scans is labor-intensive and time-consuming, it is essential to develop a segmentation method based on limited labeled data to conduct this task. In this paper, we propose a self-ensembled co-training framework, which is trained by limited labeled data and large-scale unlabeled data, to automatically extract COVID lesions from CT scans. Specifically, to enrich the diversity of unsupervised information, we build a co-training framework consisting of two collaborative models, in which the two models teach each other during training by using their respective predicted pseudo-labels of unlabeled data. Moreover, to alleviate the adverse impacts of noisy pseudo-labels for each model, we propose a self-ensembling strategy to perform consistency regularization for the up-to-date predictions of unlabeled data, in which the predictions of unlabeled data are gradually ensembled via moving average at the end of every training epoch. We evaluate our framework on a COVID-19 dataset containing 103 CT scans. Experimental results show that our proposed method achieves better performance in the case of only 4 labeled CT scans compared to the state-of-the-art semi-supervised segmentation networks.


Assuntos
COVID-19 , Aprendizado de Máquina Supervisionado , Humanos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
3.
NPJ Digit Med ; 4(1): 60, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782526

RESUMO

Data privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interpreting chest CT, which can be readily used in the assessment and management of the disease. This paper demonstrates the feasibility of a federated learning method for detecting COVID-19 related CT abnormalities with external validation on patients from a multinational study. We recruited 132 patients from seven multinational different centers, with three internal hospitals from Hong Kong for training and testing, and four external, independent datasets from Mainland China and Germany, for validating model generalizability. We also conducted case studies on longitudinal scans for automated estimation of lesion burden for hospitalized COVID-19 patients. We explore the federated learning algorithms to develop a privacy-preserving AI model for COVID-19 medical image diagnosis with good generalization capability on unseen multinational datasets. Federated learning could provide an effective mechanism during pandemics to rapidly develop clinically useful AI across institutions and countries overcoming the burden of central aggregation of large amounts of sensitive data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...