Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Nanomicro Lett ; 16(1): 226, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916749

RESUMO

The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy. Here, we report two perylene diimide-based metallacages that can form stable host-guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers (hypocrellin A). Such host-guest complexation not only prevents the aggregation of photosensitizers in aqueous environments, but also offers fluorescence resonance energy transfer (FRET) from the metallacage to the photosensitizers to further improve the singlet oxygen generation (ΦΔ = 0.66). The complexes are further assembled with amphiphilic polymers, forming nanoparticles with improved stability for anticancer study. Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation, showing great potential for cancer photodynamic therapy. This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host-guest complexation-based FRET, which will open a new avenue for host-guest chemistry-based supramolecular theranostics.

2.
J Hazard Mater ; 475: 134915, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878443

RESUMO

Various exogenous contaminants typically coexist in waste activated sludge (WAS), and the long-term impacts of these co-occurring contaminants on WAS anaerobic fermentation and associated mechanisms remain largely unknown. This study reveals that the co-occurrence of surfactants and nanoparticles (NPs, i.e., Fe2O3 and CeO2, frequently detected in sludge) exhibited time-dependent impacts on the volatile fatty acids (VFAs) biosynthesis. Surfactants triggered WAS decomposition and enhanced NPs dispersion, leading to increased exposure of functional anaerobes to NPs toxicity, negatively affecting them. Consequently, key fermentation processes, acidogenic bacterial abundance, and metabolic functions were inhibited in co-occurrence reactors compared to those containing only surfactants in the early stage (before 56 d). Surprisingly, the fermentation systems containing surfactants collapsed subsequently, with VFAs yield at 72 d decreasing by 48.59-71.27 % compared to 56 d. The keystone microbes (i.e., Acidobacteria (16 d) vs Patescibacteria (56 d)) were reshaped, and metabolic traits (i.e., proB involved in intracellular metabolism) were downregulated by 0.05-78.02 % due to reduced microbial adaptive capacity (i.e., quorum sensing (QS)). Partial least squares path modeling (PLS-PM) analysis suggests that the microbial community was the predominant factor influencing VFAs generation. This study provides new insights into the long-term effects of co-contaminants on the biological treatment of WAS.


Assuntos
Cério , Ácidos Graxos Voláteis , Fermentação , Esgotos , Tensoativos , Esgotos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Cério/metabolismo , Cério/química , Reatores Biológicos , Compostos Férricos/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Nanopartículas/química
3.
J Stroke Cerebrovasc Dis ; : 107829, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901472

RESUMO

BACKGROUND: Cerebral small vessel disease (CSVD) includes vascular disorders characterized by heterogeneous pathomechanisms and different neuropathological clinical manifestations. Cognitive dysfunction in CSVD is associated with reductions in structural covariance networks (SCNs). A majority of research conducted on SCNs focused on group-level analysis. However, it is crucial to investigate the individualized variations in order to gain a better understanding of heterogeneous disorders such as CSVD. Therefore, this study aimed to utilize individualized differential structural covariance network (IDSCN) analysis to detect individualized structural covariance aberration. METHODS: A total of 35 healthy controls and 33 CSVD patients with cognitive impairment participated in this investigation. Using the regional gray matter volume in their T1 images, the IDSCN was constructed for each participant. Finally, the differential structural covariance edges between the two groups were determined by comparing their IDSCN using paired-sample t-tests. On the basis of these differential edges, the two subtypes of cognitively impaired CSVD patients were identified. RESULTS: The findings revealed that the differential structural covariance edges in CSVD patients with cognitive impairment showed a highly heterogeneous idistribution, with the edges primarily cross-distributed between the occipital lobe (specifically inferior occipital gyrus and cuneus), temporal lobe (specifically superior temporal gyrus), and the cerebellum. To varying degrees, the inferior frontal gyrus and the superior parietal gyrus were also distributed. Subsequently, a correlation analysis was performed between the resulting differential edges and the cognitive scale scores. A significant negative association was observed between the cognitive scores and the differential edges distributed in the inferior frontal gyrus and inferior occipital gyrus, the superior temporal gyrus and inferior occipital gyrus, and within the temporal lobe. Particularly in the cognitive domain of attention, the two subtypes separated by differential edges exhibited differences in cognitive scale scores [Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)]. The differential edges of the subtype 1, characterized by lower cognitive level, were mainly cross-distributed in the limbic lobe (specifically the cingulate gyrus and hippocampus), the parietal lobe (including the superior parietal gyrus and precuneus), and the cerebellum. In contrast, the differential edges of the subtype 2 with a relatively high level of cognition were distributed between the cuneus and the cerebellum. CONCLUSIONS: The differential structural covariance was investigated between the healthy controls and the CSVD patients with cognitive impairment, showing that differential structural covariance existed between the two groups. The edge distributions in certain parts of the brain, such as cerebellum and occipital and temporal lobes, verified this. Significant associations were seen between cognitive scale scores and some of those differential edges .The two subtypes that differed in both differential edges and cognitive levels were also identified. The differential edges of subtype 1 with relatively lower cognitive levels were more distributed in the cingulate gyrus, hippocampus, superior parietal gyrus, and precuneus. This could potentially offer significant benefits in terms of accurate diagnosis and targeted treatment of heterogeneous disorders such as CSVD.

4.
Water Res ; 260: 121930, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38908316

RESUMO

Various pretreatments are commonly adopted to facilitate dissolved organic matter (DOM) release from waste activated sludge (WAS) for high-valued volatile fatty acids (VFAs) promotion, while the interplay impact of DOM dynamics transformation on microbial population and metabolic function traits is poorly understood. This work constructed "DOM-microorganisms-metabolism-VFAs" symbiotic ecologic networks to disclose how DOM dynamics variation intricately interacts with bacterial community networks, assembly processes, and microbial traits during WAS fermentation. The distribution of DOM was altered by different pretreatments, triggering the release of easily biodegradable compounds (O/C ratio > 0.3) and protein-like substance. This alteration greatly improved the substrates biodegradability (higher biological index) and upregulated microbial metabolism capacity (e.g., hydrolysis and fatty acid synthesis). In turn, microbial activity modifications augment substance metabolism level and expedite the conversion of highly reactive compounds (proteins-like DOM) to VFAs, leading to 1.6-4.2 fold rise in VFAs generation. Strong correlations were found between proteins-like DOM and topological properties of DOM-bacteria associations, suggesting that high DOM availability leads to more intricate ecological networks. A change in the way communities assemble, shifting from stronger uniform selection in pH10 and USp reactors to increased randomness in heat reactor, was linked to DOM composition alterations. The ecologic networks further revealed metabolic synergy between hydrolytic-acidogenic bacteria (e.g., Bacteroidota and Firmicutes) and biodegradable DOM (e.g., proteins and amino sugars) leading to higher VFAs generation. This study provides a deeper knowledge of the inherent connections between DOM and microbial traits for efficient VFAs biosynthesis during WAS anaerobic fermentation, offering valuable insights for effective WAS pretreatment strategies.

5.
6.
Am J Med Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876434

RESUMO

We described an 82-year-old man who was taken to our emergency department after being found unconscious. His electrocardiogram (ECG) showed ST-segment elevation in leads V4-V6 and cardiac troponin I (cTnI) was abnormally elevated. In addition to ECG and cTnI changes, this patient was combined with unconsciousness, high fever, abnormal liver function, acute renal failure, and rhabdomyolysis. The initial diagnosis was heat stroke, so cooling measures were initiated immediately, but a concurrent myocardial infarction was suspected. Meanwhile, emergency coronary angiography was performed, but no severe coronary stenosis or thrombosis was found. We first evaluated quantitative flow ratio (QFR) and coronary angiography-derived index of microvascular resistance (ca-IMR) in patients with heat stroke. Ca-IMR was 260 mmHg*s/m in the left circumflex artery, indicating the presence of coronary microvascular dysfunction (CMD). After several days of treatment, the patient recovered from multiple organ damage. Therefore, ECG and troponin results should be interpreted carefully in patients with high fever and coma during high temperature seasons.

7.
ACS Nano ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932673

RESUMO

Postoperative adhesion is a common complication after abdominal surgery, but current clinical products have unsatisfactory therapeutic effects. Here, we present a hydrogel patch formed in a single step through dialysis. The exchange of DMSO into water facilitates hydrophobic aggregate in situ formation and the formation of hydrogen bonds within the hydrogel. Thanks to the optimized component ratio and precise structural design. The hydrogel patch has soft-tissue-like mechanical characteristics, including high strength, high toughness, low modulus similar to the abdominal wall, good fatigue resistance, and fast self-recovery properties. The nonswellable hydrogel patch retains over 80% of its original mechanical properties after 7 days of immersion in physiological saline, with a maximum swelling ratio of 5.6%. Moreover, the hydrophobic biomultifunctionality of benzyl isothiocyanate can self-assemble onto the hydrogel patch during the sol-gel transition process, enabling it to remodel the inflammatory microenvironment through synergistic antibacterial, antioxidant, and anti-inflammatory effects. The hydrogel patch prevents postsurgical adhesion in a rat sidewall defect-cecum abrasion model and outperforms the leading commercial Interceed. It holds promising potential for clinical translation, considering that FDA-approved raw materials (PVA and gelatin) form the backbone of this effective hydrogel patch.

8.
Int J Biol Macromol ; 271(Pt 2): 132453, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772472

RESUMO

Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs­sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.


Assuntos
Alginatos , Antibacterianos , Antioxidantes , Carvão Vegetal , Cromo , Nanopartículas Metálicas , Prata , Taninos , Prata/química , Carvão Vegetal/química , Alginatos/química , Taninos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Adsorção , Cromo/química , Géis/química , Corantes/química , Cinética , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/química , Polifenóis
9.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723991

RESUMO

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Assuntos
Biofilmes , Ácidos Indolacéticos , Microalgas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia
11.
J Stroke Cerebrovasc Dis ; : 107773, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763326

RESUMO

OBJECTIVES: Remnant cholesterol (RC) is thought to be an important pathogenic risk factor for atherosclerosis, however, the relationship between RC and acute ischemic stroke (AIS) is still unclear. This study aimed to determine whether fasting blood RC level is an independent risk factor for AIS. MATERIALS AND METHODS: A retrospective analysis was performed on 650 patients with AIS and 598 healthy controls during the same time period. The association between RC and AIS was investigated using binary logistic regression, and the relationship between RC and AIS risk was demonstrated using Restricted Cubic Splines (RCS). RESULTS: RC was significantly higher in the AIS group compared with control group, and was an independent risk factor for AIS when the covariates were not adjusted;After adjusting some covariates, RC was still an independent risk factor for AIS. The RCS analysis found the risk was non-linear: when RC concentration was less than 0.69 mol/L, the risk of AIS increased with the elevation of RC, and when RC concentration was more than or equal to 0.69 mol/L, the risk of AIS was insignificant with the elevation of RC. Correlation analysis revealed that RC was associated with diabetes and fasting glucose. Further analysis revealed that the incidence of AIS in diabetic patients increased significantly with the increase of RC, and RCS analysis revealed that the risk of AIS in diabetic patients increased with the increase of RC when RC was more than 1.15 mol/L. CONCLUSIONS: This study confirms RC as an independent risk factor for AIS, which highlights a distinct non-linear association between RC levels and AIS risk. These findings suggest the need for targeted AIS risk assessment strategies, especially in diabetic patients, and underscore the relevance of RC as a biomarker in AIS risk stratification.

12.
Hum Reprod ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725195

RESUMO

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

13.
Hum Reprod Open ; 2024(2): hoae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716407

RESUMO

Up to a half of couples seeking medical assistance for infertility are diagnosed with unexplained infertility, characterized by normal ovulation, tubal patency, and semen analysis results. This condition presents a challenge in determining the optimal treatment approach. Available treatments include IUI and IVF, but guidelines vary on when to offer each. Prognosis-based management is identified as a research priority, and various prediction models have been developed to guide treatment decisions. Prognostic factors include female age, duration of subfertility, and sperm parameters, among others. Prognosis-based strategies can enhance cost-effectiveness, safety, and patient outcomes, offering less invasive options to those with good prognoses and more aggressive interventions to those with poor prognoses. However, there is a gap between research evidence and its clinical application. In this article, we discuss the application of prognosis-based management in the context of unexplained infertility, highlighting its potential to improve clinical decision-making and patient outcomes.

14.
Angew Chem Int Ed Engl ; : e202407923, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738617

RESUMO

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

15.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38736181

RESUMO

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Assuntos
Inibidores de Glicosídeo Hidrolases , Hypericum , Simulação de Acoplamento Molecular , Extratos Vegetais , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Hypericum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estrutura Molecular , Ligantes , Relação Estrutura-Atividade , Cinética
16.
Bioact Mater ; 37: 424-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689661

RESUMO

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures. Itaconate is a TCA cycle metabolite that has emerged as a potent macrophage immunomodulator that limits the inflammatory response. During osteogenic differentiation, BMSCs tend to undergo aerobic glycolysis and metabolize glucose to lactate. Copper ion (Cu2+) is an essential trace element that participates in glucose metabolism and may stimulate glycolysis in BMSCs and promote osteogenesis. In this study, we develop a 4-octyl itaconate (4-OI)@Cu@Gel nanocomposite hydrogel that can effectively deliver and release 4-OI and Cu2+ to modulate the metabolic microenvironment and improve the functions of cells involved in the fracture healing process. The findings reveal that burst release of 4-OI reduces the inflammatory response, promotes M2 macrophage polarization, and alleviates oxidative stress, while sustained release of Cu2+ stimulates BMSC glycolysis and osteogenic differentiation and enhances endothelial cell angiogenesis. Consequently, the 4-OI@Cu@Gel system achieves rapid fracture healing in mice. Thus, this study proposes a promising regenerative strategy to expedite bone fracture healing through metabolic reprogramming of macrophages and BMSCs.

17.
Medicine (Baltimore) ; 103(15): e37728, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608069

RESUMO

Stomach adenocarcinoma (STAD) is one of the subtype of gastric cancer with high invasiveness, extreme heterogeneity, high morbidity, and high mortality. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity and carcinogenesis. An integrative machine learning procedure including 10 methods was performed to develop a prognostic degradome-based prognostic signature (DPS) in TCGA, GSE15459, GSE26253, and GSE62254 datasets. Investigations of the DPS concerning immune infiltration, immunotherapy benefits, and drug priority were orchestrated. The DPS developed by Enet [alpha = 0.3] method was regarded as the optimal prognostic model. The DPS had a stable and powerful performance in predicting the clinical outcome of STAD and served as an independent risk factor in training and testing cohorts. The C-index of DPS was higher than that of age, sex, and clinical stage. STAD patients with low DPS scores had a higher abundance of B cells, CD8+ T cells, higher cytolytic scores, and T cell co-stimulation scores. Moreover, low DPS score indicated a lower tumor immune dysfunction and exclusion score, lower T cell dysfunction and exclusion score, higher PD1&CTLA4 immunophenoscore, and higher tumor mutation burden score in STAD, demonstrating a better immunotherapy response. STAD patients with a high DPS score had a lower IC50 value of common chemotherapy and targeted therapy regimens (Cisplatin, Docetaxel, Gefitinib, etc). Our study developed an optimal DPS for STAD. The DPS could predict the prognosis, risk stratification and guide treatment for STAD patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Prognóstico , Imunoterapia , Adenocarcinoma/terapia
18.
Medicine (Baltimore) ; 103(16): e37783, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640321

RESUMO

Ovarian cancer (OC) is the leading cause of gynecological cancer death. Cancer-associated fibroblasts (CAF) is involved in wound healing and inflammatory processes, tumor occurrence and progression, and chemotherapy resistance in OC. GSE184880 dataset was used to identify CAF-related genes in OC. CAF-related signature (CRS) was constructed using integrative 10 machine learning methods with the datasets from the Cancer Genome Atlas, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082. The performance of CRS in predicting immunotherapy benefits was verified using 3 immunotherapy datasets (GSE91061, GSE78220, and IMvigor210) and several immune calculating scores. The Lasso + StepCox[forward] method-based predicting model having a highest average C index of 0.69 was referred as the optimal CRS and it had a stable and powerful performance in predicting clinical outcome of OC patients, with the 1-, 3-, and 5-year area under curves were 0.699, 0.708, and 0.767 in the Cancer Genome Atlas cohort. The C index of CRS was higher than that of tumor grade, clinical stage, and many developed signatures. Low CRS score demonstrated lower tumor immune dysfunction and exclusion score, lower immune escape score, higher PD1&CTLA4 immunophenoscore, higher tumor mutation burden score, higher response rate and better prognosis in OC, suggesting a better immunotherapy response. OC patients with low CRS score had a lower half maximal inhibitory concentration value of some drugs (Gemcitabine, Tamoxifen, and Nilotinib, etc) and lower score of some cancer-related hallmarks (Notch signaling, hypoxia, and glycolysis, etc). The current study developed an optimal CRS in OC, which acted as an indicator for the prognosis, stratifying risk and guiding treatment for OC patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fibroblastos , Gencitabina , Glicólise , Prognóstico
19.
Colloids Surf B Biointerfaces ; 238: 113916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636438

RESUMO

The ureteral stent is an effective treatment for clinical ureteral stricture following urological surgery, and the functional coating of the stent could effectively inhibit bacterial colonization and other complications. The present review provides an analysis and description of the materials used in ureteral stents and their coatings. Emphasis is placed on the technological advancements of functional coatings, taking into consideration the characteristics of these materials and the properties of their active substances. Furthermore, recent advances in enhancing the therapeutic efficacy of functional coatings are also reviewed. It is anticipated that this article will serve as a valuable reference providing insights for future research development on new drug-loaded ureteral stents.


Assuntos
Materiais Revestidos Biocompatíveis , Polímeros , Stents , Ureter , Humanos , Ureter/cirurgia , Polímeros/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais
20.
ACS Nano ; 18(14): 9871-9885, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545939

RESUMO

As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Nanopartículas , Neoplasias , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Glutationa , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...