Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 50(11): 1631-9, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21478940

RESUMO

We investigate the performance and capability of a holographic modal wavefront sensor (HMWS) that is based on a multiplexed phase computer-generated hologram (MPCGH). The theoretical treatments of the HMWS are presented with scalar diffraction approximations and Fourier analysis. Several MPCGHs have been designed with different linear carrier frequencies, by using of the multiplexed coding scheme we have proposed, and by coding some common Zernike modes. The numerical simulation is carried out to investigate the performance of the HMWS to detect particular aberration mode(s), by considering the effect of different carrier frequency selections and the capability of coding a large number of modes. The results exhibit the expected characteristics of a corresponding symmetric spot pair, and indicate that the wavefront distorted by a particular Zernike mode(s) can be retrieved immediately through solving the amplitude of each mode coded in MPCGHs through the response curves of the HMWS.

2.
Opt Express ; 17(5): 3707-15, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259211

RESUMO

In this paper we determine the optimum propagation distance between measurement planes and the plane of the lens in a wavefront curvature sensor with the diffraction optics approach. From the diffraction viewpoint, the measured wavefront aberration can be decomposed into Fourier harmonics at various frequencies. The curvature signal produced by a single harmonic is analyzed with the wave propagation transfer function approach, which is the frequency analysis of wavefront curvature sensing. The intensity of the curvature signal is a sine function of the product of the propagation distance and the squared frequency. To maximize the curvature signal, the optimum propagation distance is proposed as one quarter of the Talbot length at the critical frequency (average power point at which the power spectrum density is the average power spectrum density). Following the determination of the propagation distance, the intensity of the curvature signal varies sinusoidally with the squared frequencies, vanishing at some higher frequency bands just like a comb filter. To cover these insensitive bands, wavefront curvature sensing with dual propagation distances or with multi-propagation distances is proposed.

3.
J Opt Soc Am A Opt Image Sci Vis ; 24(11): 3444-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17975571

RESUMO

The optimum phase defocus grating for wavefront curvature sensing is proposed. It features an equidistantly quantized, binary-phase-step defocus grating with a phase-step height of pi. The diffractive efficiency of the phase defocus grating is theoretically computed. The optical transfer function is obtained. The optimum phase defocus grating is fabricated. The high diffractive efficiencies of the +/-1 diffraction orders are verified experimentally, the average values of which are 38.08% and 40.36%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...