Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(19): 22071-22081, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35512324

RESUMO

Hydrogen produced from solar energy has the potential to replace petroleum in the future. To this respect, there is a need in the abandoned and efficient materials that can continuously split water molecules using solar energy. In this report, an ammonium thiomolybdate (ATM: (NH4)2Mo3S13) is evaluated as a p-type semiconductor film photocathode for hydrogen evolution reaction. The ATM thin films are prepared by spin-coating on fluorine-doped tin oxide substrates, and their structural, morphological, optical, photoelectrical, and photoelectrochemical (PEC) properties are studied. Transient surface photovoltage (TSPV) spectroscopy and spectroscopic ellipsometry indicate the band gap Eg = 1.9 eV for the ATM thin films. Furthermore, the photovoltage of the ATM thin films measured by TSPV is correlated to the photocurrents measured by the PEC characterization that can be used to evaluate the material potential for hydrogen generation. The films exhibit a low photocurrent density of 46 µA cm-2 at 0 VRHE. However, its combination with WSe2 thin-film photocathodes results in a significant increase in photocurrent density up to 4.6 mA cm-2 at 0 VRHE (100 times). The reason for such a strong charge carrier transfer effect for ATM/WSe2 heterojunction photocathodes is studied by TSPV spectroscopy that allows a comprehensive evaluation of potential photovoltaic materials toward PEC hydrogen production. Furthermore, the photovoltage generated by a WSe2 thin film is 30 times lower than that of its single crystal, which indicates that the quality of WSe2 thin films should be improved for faster PEC hydrogen evolution.

2.
ACS Appl Mater Interfaces ; 12(2): 3140-3149, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829545

RESUMO

Electronic properties and charge transfer processes were studied in an n-Si(n++)/TiO2(ALD) system at an amorphous TiO2/anatase transition by transient surface photovoltage spectroscopy at constant photon flux. The TiO2 layers were deposited by atomic layer deposition (ALD) onto highly doped silicon (c-Si(n++)), and the phase composition of the TiO2 layers changed with increasing thickness from amorphous to the anatase polymorph as anatase crystallites started to grow at the surface. Depending on phase composition, the band gap of TiO2 correlated with the characteristic energy of exponential tails. In most cases, photogenerated electrons were separated toward the back contact. For photogeneration in c-Si(n++), electron back transfer was limited by Auger recombination with holes in the surface space charge region of c-Si(n++), and by electron transfer across the interface, either via exponentially distributed states near the conduction band edge of amorphous TiO2 or via distance-dependent recombination with holes trapped in anatase. For photogeneration in TiO2, electron back transfer was limited by trapping in TiO2. Under strong light absorption in amorphous TiO2 with anatase crystallites on top, electrons were preferentially separated toward the TiO2 surface.

3.
Adv Mater ; 31(8): e1807204, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614577

RESUMO

Conductive metal oxides represent a new category of functional material with vital importance for many modern applications. The present work introduces a new conductive metal oxide V13 O16 , which is synthesized via a simplified photoelectrochemical procedure and decorated onto the semiconducting photocatalyst BiVO4 in controlled mass percentages ranging from 25% to 37%. Owing to its excellent conductivity and good compatibility with oxide materials, the metallic V13 O16 -decorated BiVO4 hybrid catalyst shows a high photocurrent density of 2.2 ± 0.2 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE). Both experimental characterization and density functional theory calculations indicate that the superior photocurrent derives from enhanced charge separation and transfer, resulting from ohmic contact at the interface of mixed phases and superior electrical conductivity from V13 O16 . A Co-Pi coating on BiVO4 -V13 O16 further increases the photocurrent to 5.0 ± 0.5 mA cm-2 at 1.23 V versus RHE, which is among the highest reported for BiVO4 -based photoelectrodes. Surface photovoltage and transient photocurrent measurements suggest a charge-transfer model in which photocurrents are enhanced by improved surface passivation, although the barrier at the Co-Pi/electrolyte interface limits the charge transfer.

4.
Rev Sci Instrum ; 88(5): 053904, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571417

RESUMO

The measurement of transient surface photovoltage (SPV) signals in a fixed capacitor arrangement over 12 orders of magnitude in time has been demonstrated for a SnO2:F/TiO2/In2S3 layer system under high vacuum. For this purpose, a high impedance buffer with a bandwidth above 200 MHz and an effective input resistance of 200-700 TΩ has been developed. Fast separation of photo generated charge carriers within ns and very slow relaxation of SPV signals excited with short laser pulses and the measurement of SPV spectra under continuous illumination with a halogen lamp were demonstrated.

5.
Phys Chem Chem Phys ; 15(5): 1389-98, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23247669

RESUMO

α-Fe(2)O(3) (hematite) photoanodes for the oxygen evolution reaction (OER) were prepared by a cost-efficient sol-gel procedure. Due to low active photoelectrochemical properties observed, it is assumed that the sol-gel procedure leads to hematite films with defects and surface states on which generated charge carriers are recombined or immobilized in trap processes. Electrochemical activation was proven to diminish unfavourable surface groups to some extent. More efficiently, a plasma treatment improves significantly the photoelectrochemical properties of the OER. X-ray photoelectron spectroscopy (XPS) analysis reveals an oxygen enriched surface layer with new oxygen species which may be responsible for the improved electrochemical activity. Due to surface photovoltage an increased fraction of transferred charge carriers from these newly produced surface defects are identified.


Assuntos
Compostos Férricos/química , Géis/química , Luz , Água/química , Técnicas Eletroquímicas , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...