Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chinese Journal of Trauma ; (12): 107-120, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-992578

RESUMO

Infectious bone defect is bone defect with infection or as a result of treatment of bone infection. It requires surgical intervention, and the treatment processes are complex and long, which include bone infection control,bone defect repair and even complex soft tissue reconstructions in some cases. Failure to achieve the goals in any step may lead to the failure of the overall treatment. Therefore, infectious bone defect has been a worldwide challenge in the field of orthopedics. Conventionally, sequestrectomy, bone grafting, bone transport, and systemic/local antibiotic treatment are standard therapies. Radical debridement remains one of the cornerstones for the management of bone infection. However, the scale of debridement and the timing and method of bone defect reconstruction remain controversial. With the clinical application of induced membrane technique, effective infection control and rapid bone reconstruction have been achieved in the management of infectious bone defect. The induced membrane technique has attracted more interests and attention, but the lack of understanding the basic principles of infection control and technical details may hamper the clinical outcomes of induced membrane technique and complications can possibly occur. Therefore, the Chinese Orthopedic Association organized domestic orthopedic experts to formulate An evidence-based clinical guideline for the treatment of infectious bone defect with induced membrane technique ( version 2023) according to the evidence-based method and put forward recommendations on infectious bone defect from the aspects of precise diagnosis, preoperative evaluation, operation procedure, postoperative management and rehabilitation, so as to provide useful references for the treatment of infectious bone defect with induced membrane technique.

2.
J Orthop Translat ; 14: 57-62, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30035033

RESUMO

BACKGROUND: Surgical masks (SMs) are used to reduce bacterial shedding from the mouth, nose and face. This study aimed to investigate whether SMs may be a potential source of bacterial shedding leading to an increased risk of surgical site infection. METHODS: Bacterial contamination of the SMs was tested by making an impression of the external surface of the mask on sterile culture media immediately. We investigated the difference in bacterial counts between the SMs worn by surgeons and those placed unused in the operating room (OR), and the bacterial count variation with indicated wearing time. Moreover, the difference in bacterial counts on the external surface between the first and second layers of double-layered SMs was also assessed. RESULTS: The bacterial count on the surface of SMs increased with extended operating times; significant difference was found between the 4- to 6-hour and 0-hour groups (p < 0.05). When we analysed the bacterial counts from the same surgeon, a significant increase was noted in the 2-hours group. Moreover, the bacterial counts were significantly higher among the surgeons than the OR. Additionally, the bacterial count of the external surface of the second mask was significantly higher than that of the first one. CONCLUSIONS: The source of bacterial contamination in SMs was the body surface of the surgeons rather than the OR environment. Moreover, we recommend that surgeons should change the mask after each operation, especially those beyond 2 hours. Double-layered SMs or those with excellent filtration function may also be a better alternative. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study provides strong evidence for the identification that SMs as source of bacterial contamination during operative procedures, which should be a cause for alarm and attention in the prevention of surgical site infection in clinical practice.

3.
Journal of Medical Biomechanics ; (6): E200-E205, 2018.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-803788

RESUMO

Objective To investigate the trabecular stress distributions on the cortical bone and determine whether the cancellous bone can share the load of the acetabulum with a press-fit acetabular cup. Methods The acetabulum was scanned via micro-computed tomography (CT) to build a three-dimensional micro-finite element analysis (μFEA) model of the acetabulum. The trabecular stress and strain of the bony acetabulum were calculated following total hip arthroplasty (THA) to investigate the biomechanical characteristics of their distributions. Results With the implantation of the press-fit acetabular cup into the acetabulum, the high-stress zone of the articular surface was found to be located in the pubic bone area, with a maximum stress of 1.398 MPa. The largest high-stress zone within the articular surface was at the craniomedial part where it was supported by the iliac. For the cancellous bone within the acetabulum, the high stress was relatively widely distributed on the craniomedial part. When a 1.372 kN load was applied, the high stress was found at the craniomedial and anterior-inferior parts of the articular surface where it was supported by the iliac and pubic bone, with a trabecular micro-damage occurring in the anterior-inferior part. The highest tensile stress at the craniomedial part was 0.604 MPa. For the cancellous bone within the acetabulum, the high stress was mainly distributed on the craniomedial and anterior-inferior parts. Conclusions The high stress near the periphery of the articular surface showed a three-point circular distribution, which was mainly distributed on the iliac, ischial, and pubic bone area. The stress was distributed more uniformly owing to the deformation of the cancellous bone in the acetabulum. The cancellous bone in the acetabulum has the function of load-bearing.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-707488

RESUMO

Objective To introduce a new method for preparation of bioactive β-tricalcium phosphate (β-TCP) by rapid stem cell screen-and-enrich-and-combine circulating system (SECCS) and evaluate its efficacy in the treatment of fresh fractures and bone defects.Methods Twenty-two patients with fresh fracture and bone defects were treated with SECCS from July 2013 to April 2016.They were 16 males and 6 females with an average age of 52.2 years (from 27 to 81 years).There were 15 tibial plateau fractures and 7 calcaneal fractures.The average size of bone defects was 12.5 mL.Bioactive β-TCP was prepared by SECCS intraoperatively and implanted back immediately into the bone defects.Radiographic examination,Lysholm knee scoring and Maryland foot scoring were used for assessment of curative efficacy.Results The 22 patients were followed up for an average of 25.7 months (from 12 to 46 months).By SECCS,the enrichment efficiency of bone marrow stromal cells (BMSCs) reached up to 82.4% and the cell viability was not affected.The tibial plateau fractures were re-transplanted with 13,381.3 BMSCs on average and healed after an average of 8.9 weeks (from 6 to 15 weeks).The Lysholm knee scores at one year postoperatively averaged 93.6 points (from 84 to 100 points),yielding 10 excellent cases,4 good cases and one fair case.The calcaneal fractures were implanted back with 16,677.7 BMSCs on average and healed after an average of 9.4 weeks (from 8 to 13 weeks).The average Maryland foot score at one year after operation was 93.6 points (from 85 to 98 points),yielding 6 excellent cases and one good case.Conclusion Bioactive materials prepared by SECCS are good bone grafts for fresh fractures and bone defects.

5.
J Biomed Mater Res A ; 95(3): 727-34, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20725976

RESUMO

Bone formation, which is inhibited by particulate wear debris, is a pathological factor that contributes to periprosthetic osteolysis. Although the nuclear factor of activated T cells c1 (NFATc1) is known to be involved in osteoblast differentiation, and its effect on osteoblasts in response to wear particles remains unclear. In this study, we investigated the role of NFATc1 in the regulation of osteoblastic differentiation of rat calvaria (RC) cells (a cell-culture model comprising many osteoprogenitors) that were challenged with titanium (Ti) particles. The results showed that the Ti particles inhibited osteoblastic differentiation and mineralization of RC cells. NFATc1 plays a critical role in the Ti-particle inhibition process of the osteoblastic differentiation in RC cells. Inactivation of NFATc1 by the 11R-VIVIT peptide potently enhanced osteoblast differentiation and mineralization inhibition by the Ti particles. The 11R-VIVIT peptide does not have a toxic effect on the RC cells. On the basis of these data, we conclude that inactivation of NFATc1 by the 11R-VIVIT peptide may provide a promising therapeutic target for the treatment of periprosthetic osteolysis by increasing bone formation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Oligopeptídeos/farmacologia , Osteoblastos , Titânio/farmacologia , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Células Cultivadas , Masculino , Oligopeptídeos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Crânio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...