Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38981117

RESUMO

OBJECTIVES: We describe new curriculum materials for engaging secondary school students in exploring the "big data" in the NIH All of Us Research Program's Public Data Browser and the co-design processes used to collaboratively develop the materials. We also describe the methods used to develop and validate assessment items for studying the efficacy of the materials for student learning as well as preliminary findings from these studies. MATERIALS AND METHODS: Secondary-level biology teachers from across the United States participated in a 2.5-day Co-design Summer Institute. After learning about the All of Us Research Program and its Data Browser, they collaboratively developed learning objectives and initial ideas for learning experiences related to exploring the Data Browser and big data. The Genetic Science Learning Center team at the University of Utah further developed the educators' ideas. Additional teachers and their students participated in classroom pilot studies to validate a 22-item instrument that assesses students' knowledge. Educators completed surveys about the materials and their experiences. RESULTS: The "Exploring Big Data with the All of Us Data Browser" curriculum module includes 3 data exploration guides that engage students in using the Data Browser, 3 related multimedia pieces, and teacher support materials. Pilot testing showed substantial growth in students' understanding of key big data concepts and research applications. DISCUSSION AND CONCLUSION: Our co-design process provides a model for educator engagement. The new curriculum module serves as a model for introducing secondary students to big data and precision medicine research by exploring diverse real-world datasets.

2.
Worm ; 4(1): e1003002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430556

RESUMO

Sperm from the nematode C. elegans gain motility during a process termed activation, which they initiate in response to specific environmental signals. During this process, a number of subcellular rearrangements occur, culminating in an altered morphology that allows the cell to crawl toward and fertilize oocytes. Both hermaphrodites and males produce sperm, and redundant, sex-biased pathways regulate the sperm's activation. The male-derived signal for sperm activation involves TRY-5, a trypsin-like serine protease in seminal fluid, but until recently it was unknown what factors were active downstream of TRY-5. In our recent paper, we reported the discovery of SNF-10, a solute carrier 6 (SLC6) family protein that is expressed by sperm and connects the activation signal to changes in sperm morphology and, ultimately, the onset of motility. Here, we review our recent results, focusing on potential models for SNF-10's function in C. elegans, and additionally discuss the role SLC6 transporters may play in male reproductive biology from invertebrates to mammals.

3.
Dev Biol ; 393(1): 171-82, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24929237

RESUMO

Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the ameboid sperm of Caenorhabditis elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/biossíntese , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Organismos Hermafroditas , Masculino , Proteínas de Membrana/metabolismo , Morfogênese , Mutação , Motilidade dos Espermatozoides/genética , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...