Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lasers Eng ; 1372021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32905530

RESUMO

Lensless biological imaging systems are an emerging alternative to conventional microscopic systems because they enable a wide field of view imaging. While most microscopic systems sacrifice the field of view for magnification, lensless systems have taken advantage of small imaging pixel size, projection, digital magnification, and post-processing to compensate for diffracted images. A new lens-based system is designed to have the exact same wide field of view as that of a basic lensless setup. A new compound lens system design is utilized to achieve an explicit aim to have the same fields of view as the lensless setup. Then the characteristics of these two optical imaging setups (lensless and lens-based setups) are compared at this level of complexity to see what the minimal systems principles are needed to achieve the biological imaging goals for simplified and less expensive future designs. For both imaging systems, images of biological entities are recorded with the help of the same CMOS imaging device and computer software. The main contribution of this work is an exhaustive comparison between the performance characteristics of both systems using optical standards and biological images.

2.
Biosensors (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35049640

RESUMO

The development of point-of-care, cost-effective, and easy-to-use assays for the accurate counting of CD4+ T cells remains an important focus for HIV-1 disease management. The CD4+ T cell count provides an indication regarding the overall success of HIV-1 treatments. The CD4+ T count information is equally important for both resource-constrained regions and areas with extensive resources. Hospitals and other allied facilities may be overwhelmed by epidemics or other disasters. An assay for a physician's office or other home-based setting is becoming increasingly popular. We have developed a technology for the rapid quantification of CD4+ T cells. A double antibody selection process, utilizing anti-CD4 and anti-CD3 antibodies, is tested and provides a high specificity. The assay utilizes a microfluidic chip coated with the anti-CD3 antibody, having an improved antibody avidity. As a result of enhanced binding, a higher flow rate can be applied that enables an improved channel washing to reduce non-specific bindings. A wide-field optical imaging system is also developed that provides the rapid quantification of cells. The designed optical setup is portable and low-cost. An ImageJ-based program is developed for the automatic counting of CD4+ T cells. We have successfully isolated and counted CD4+ T cells with high specificity and efficiency greater than 90%.


Assuntos
Infecções por HIV , Dispositivos Lab-On-A-Chip , Contagem de Linfócito CD4/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Separação Celular , Citometria de Fluxo/métodos , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , Humanos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...