Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 28(9): 1845-52, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26727653

RESUMO

A field-effect device based on dual graphene-GaSe heterojunctions is demonstrated. Monolayer graphene is used as electrodes on a GaSe channel to form two opposing Schottky diodes controllable by local top gates. The device exhibits strong rectification with tunable threshold voltage. Detailed theoretical modeling is used to explain the device operation and to distinguish the differences compared to a single diode.

2.
Nanoscale ; 7(35): 14715-22, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26282633

RESUMO

We present a new method to extract resistivity and doping concentration of semiconductor materials from Scanning Microwave Microscopy (SMM) S11 reflection measurements. Using a three error parameters de-embedding workflow, the S11 raw data are converted into calibrated capacitance and resistance images where no calibration sample is required. The SMM capacitance and resistance values were measured at 18 GHz and ranged from 0 to 100 aF and from 0 to 1 MΩ, respectively. A tip-sample analytical model that includes tip radius, microwave penetration skin depth, and semiconductor depletion layer width has been applied to extract resistivity and doping concentration from the calibrated SMM resistance. The method has been tested on two doped silicon samples and in both cases the resistivity and doping concentration are in quantitative agreement with the data-sheet values over a range of 10(-3)Ω cm to 10(1)Ω cm, and 10(14) atoms per cm(3) to 10(20) atoms per cm(3), respectively. The measured dopant density values, with related uncertainties, are [1.1 ± 0.6] × 10(18) atoms per cm(3), [2.2 ± 0.4] × 10(17) atoms per cm(3), [4.5 ± 0.2] × 10(16) atoms per cm(3), [4.5 ± 1.3] × 10(15) atoms per cm(3), [4.5 ± 1.7] × 10(14) atoms per cm(3). The method does not require sample treatment like cleavage and cross-sectioning, and high contact imaging forces are not necessary, thus it is easily applicable to various semiconductor and materials science investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...