Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0294624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051743

RESUMO

The serovars of Salmonella enterica display dramatic differences in pathogenesis and host preferences. We developed a process (patent pending) for grouping Salmonella isolates and serovars by their public health risk. We collated a curated set of 12,337 S. enterica isolate genomes from human, beef, and bovine sources in the US. After annotating a virulence gene catalog for each isolate, we used unsupervised random forest methods to estimate the proximity (similarity) between isolates based upon the genomic presentation of putative virulence traits We then grouped isolates (virulence clusters) using hierarchical clustering (Ward's method), used non-parametric bootstrapping to assess cluster stability, and externally validated the clusters against epidemiological virulence measures from FoodNet, the National Outbreak Reporting System (NORS), and US federal sampling of beef products. We identified five stable virulence clusters of S. enterica serovars. Cluster 1 (higher virulence) serovars yielded an annual incidence rate of domestically acquired sporadic cases roughly one and a half times higher than the other four clusters combined (Clusters 2-5, lower virulence). Compared to other clusters, cluster 1 also had a higher proportion of infections leading to hospitalization and was implicated in more foodborne and beef-associated outbreaks, despite being isolated at a similar frequency from beef products as other clusters. We also identified subpopulations within 11 serovars. Remarkably, we found S. Infantis and S. Typhimurium subpopulations that significantly differed in genome length and clinical case presentation. Further, we found that the presence of the pESI plasmid accounted for the genome length differences between the S. Infantis subpopulations. Our results show that S. enterica strains associated with highest incidence of human infections share a common virulence repertoire. This work could be updated regularly and used in combination with foodborne surveillance information to prioritize serovars of public health concern.


Assuntos
Salmonella enterica , Animais , Bovinos , Humanos , Estados Unidos/epidemiologia , Virulência/genética , Sorogrupo , Salmonella , Genômica
2.
J Food Prot ; 85(11): 1496-1505, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723548

RESUMO

ABSTRACT: Foodborne antimicrobial-resistant (AMR) microorganisms are a global food safety concern. Antimicrobial drug use (AMU) in livestock may increase the risk of resistant foodborne bacterial infections in humans via contaminated animal products. Consequently, countries have implemented different livestock AMU restriction policies, opening the potential for trade disputes. AMR risk equivalence between countries with different AMU policies must be established by using scientifically justified risk assessments. The Codex Alimentarius Commission's Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance (AMR Codex) recommends an approach that requires quantification of detailed information, for which, in many instances, little to no data exist. Using AMR Salmonella exposure from beef consumption as an example, we demonstrate the difficulty of implementing the AMR Codex by comparing key regionally specific parameters within the United States and European Union, two regions with substantial beef production and consumption, robust foodborne pathogen sampling and surveillance systems, and different AMU policies. Currently, neither region fully captures data for key regional variables to populate a detailed risk assessment as outlined in the AMR Codex, nor are they able to adequately link AMU in livestock to AMR infections in humans. Therefore, the AMR Codex guidelines are currently aspirational and not a viable option to assess the impact of livestock AMU reductions on the human health risk of AMR salmonellosis from beef or produce regionally comparable estimates of risk. More flexible risk assessment guidelines that more directly link livestock AMU to human health risk and are amenable to currently available data are needed to allow for country variations and to calculate comparable regional risk estimates, which can be used to guide international trade policy.


Assuntos
Antibacterianos , Anti-Infecciosos , Bovinos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Comércio , Internacionalidade , Gado , Medição de Risco
3.
Microorganisms ; 9(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361911

RESUMO

Salmonella enterica is common foodborne pathogen that generates both enteric and systemic infections in hosts. Antibiotic resistance is common is certain serovars of the pathogen and of great concern to public health. Recent reports have documented the co-occurrence of metal resistance with antibiotic resistance in one serovar of S. enterica. Therefore, we sought to identify possible co-occurrence in a large genomic dataset. Genome assemblies of 56,348 strains of S. enterica comprising 20 major serovars were downloaded from NCBI. The downloaded assemblies were quality controlled and in silico serotyped to ensure consistency and avoid improper annotation from public databases. Metal and antibiotic resistance genes were identified in the genomes as well as plasmid replicons. Co-occurrent genes were identified by constructing a co-occurrence matrix and grouping said matrix using k-means clustering. Three groups of co-occurrent genes were identified using k-means clustering. Group 1 was comprised of the pco and sil operons that confer resistance to copper and silver, respectively. Group 1 was distributed across four serovars. Group 2 contained the majority of the genes and little to no co-occurrence was observed. Metal and antibiotic co-occurrence was identified in group 3 that contained genes conferring resistance to: arsenic, mercury, beta-lactams, sulfonamides, and tetracyclines. Group 3 genes were also associated with an IncQ1 class plasmid replicon. Metal and antibiotic co-occurrence from group 3 genes is mostly isolated to one clade of S. enterica I 4,[5],12:i:-.

4.
F1000Res ; 9: 1142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214877

RESUMO

Background: Salmonella enterica serotype Mbandaka ( Salmonella ser. Mbandaka) is a multi-host adapted Non-typhoidal Salmonella (NTS) that can cause foodborne illnesses in human. Outbreaks of Salmonella ser. Mbandaka contributed to the economic stress caused by NTS due to hospitalizations. Whole genome sequencing (WGS)-based phylogenomic analysis facilitates better understanding of the genomic features that may expedite the foodborne spread of Salmonella ser. Mbandaka. Methods: In the present study, we define the population structure, antimicrobial resistance (AMR), and virulence profile of Salmonella ser. Mbandaka using WGS data of more than 400 isolates collected from different parts of the world. We validated the genotypic prediction of AMR and virulence phenotypically using an available set of representative isolates. Results: Phylogenetic analysis of Salmonella ser. Mbandaka using Bayesian approaches revealed clustering of the population into two major groups; however, clustering of these groups and their subgroups showed no pattern based on the host or geographical origin. Instead, we found a uniform virulence gene repertoire in all isolates. Phenotypic analysis on a representative set of isolates showed a similar trend in cell invasion behavior and adaptation to a low pH environment. Both genotypic and phenotypic analysis revealed the carriage of multidrug resistance (MDR) genes in Salmonella ser. Mbandaka. Conclusions: Overall, our results show that the presence of multidrug resistance along with adaptation to broad range of hosts and uniformity in the virulence potential, isolates of Salmonella ser. Mbandaka from any source could have the potential to cause foodborne outbreaks as well as AMR dissemination.


Assuntos
Salmonella enterica , Animais , Antibacterianos , Teorema de Bayes , Humanos , Filogenia , Salmonella/genética , Salmonella enterica/genética , Sorogrupo , Virulência/genética
5.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031212

RESUMO

Bacterial communities resident in the hindgut of pigs, have profound impacts on health and disease. Investigations into the pig microbiome have utilized either culture-dependent, or far more commonly, culture-independent techniques using next generation sequencing. We contend that a combination of both approaches generates a more coherent view of microbiome composition. In this study, we surveyed the microbiome of Tamworth breed and feral pigs through the integration high throughput culturing and shotgun metagenomics. A single culture medium was used for culturing. Selective screens were added to the media to increase culture diversity. In total, 46 distinct bacterial species were isolated from the Tamworth and feral samples. Selective screens successfully shifted the diversity of bacteria on agar plates. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function. It allows for assemblage of defined bacterial communities for studies in bioreactors or germfree animal models.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bacteroidetes/genética , Metagenômica , RNA Ribossômico 16S/genética , Suínos
6.
Genome Biol Evol ; 11(8): 2220-2231, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329231

RESUMO

Salmonella enterica serotype Dublin (S. Dublin) is a bovine-adapted serotype that can cause serious systemic infections in humans. Despite the increasing prevalence of human infections and the negative impact on agricultural processes, little is known about the population structure of the serotype. To this end, we compiled a manually curated data set comprising of 880 S. Dublin genomes. Core genome phylogeny and ancestral state reconstruction revealed that region-specific clades dominate the global population structure of S. Dublin. Strains of S. Dublin in the UK are genomically distinct from US, Brazilian, and African strains. The geographical partitioning impacts the composition of the core genome as well as the ancillary genome. Antibiotic resistance genes are almost exclusively found in US genomes and are mediated by an IncA/C2 plasmid. Phage content and the S. Dublin virulence plasmid were strongly conserved in the serotype. Comparison of S. Dublin to a closely related serotype, S. enterica serotype Enteritidis, revealed that S. Dublin contains 82 serotype specific genes that are not found in S. Enteritidis. Said genes encode metabolic functions involved in the uptake and catabolism of carbohydrates and virulence genes associated with type VI secretion systems and fimbria assembly respectively.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Metagenômica , Filogeografia , Salmonella enterica/genética , Fatores de Virulência/genética , Animais , Bovinos , Regulação Bacteriana da Expressão Gênica , Salmonella enterica/classificação , Sorogrupo , Transcriptoma , Virulência
7.
Gut Pathog ; 9: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201148

RESUMO

The aim of this study was to generate a reference set of Salmonella enterica genomes isolated from wildlife from the United States and to determine the antimicrobial resistance and virulence gene profile of the isolates from the genome sequence data. We sequenced the whole genomes of 103 Salmonella isolates sampled between 1988 and 2003 from wildlife and exotic pet cases that were submitted to the Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, Oklahoma. Among 103 isolates, 50.48% were from wild birds, 0.9% was from fish, 24.27% each were from reptiles and mammals. 50.48% isolates showed resistance to at least one antibiotic. Resistance against the aminoglycoside streptomycin was most common while 9 isolates were found to be multi-drug resistant having resistance against more than three antibiotics. Determination of virulence gene profile revealed that the genes belonging to csg operons, the fim genes that encode for type 1 fimbriae and the genes belonging to type III secretion system were predominant among the isolates. The universal presence of fimbrial genes and the genes encoded by pathogenicity islands 1-2 among the isolates we report here indicates that these isolates could potentially cause disease in humans. Therefore, the genomes we report here could be a valuable reference point for future traceback investigations when wildlife is considered to be the potential source of human Salmonellosis.

8.
Sci Rep ; 7(1): 12257, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947833

RESUMO

In North America, antibiotic feed additives such as monensin and tylosin are added to the finishing diets of feedlot cattle to counter the ill-effects of feeding diets with rapidly digestible carbohydrates. While these feed additives have been proven to improve feed efficiency and reduce liver abscess incidence, how these products impact the gastrointestinal microbiota is not completely understood. In this study, we analyzed the impact of providing antibiotic feed additives to feedlot cattle using metagenome sequencing of treated and control animals. Our results indicate that use of antibiotic feed additives does not produce discernable changes at the phylum level. However, treated cattle had reduced abundance of gram-positive bacteria at the genus level. The abundance of Ruminococcus, Erysipelotrichaceae and Lachnospiraceae in the gut of treated steers was reduced. Functional analysis of the data indicates that there was only minimal impact due to the treatment in the rumen. Genes involved in detoxification were significantly increased in the rumen of AB steers. But the relative abundance of these genes was < 0.3%. However, our results did not show any correlation between the presence of antimicrobial resistance genes in the gut microbiota and the administration of antibiotic feed additives.


Assuntos
Ração Animal , Antibacterianos/administração & dosagem , Suplementos Nutricionais , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Genes Bacterianos , Metagenômica , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...