Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(27): 5817-5821, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38949965

RESUMO

Enantioconvergent transformations from racemic mixtures are attractive since they allow the generation of optically active products with full conversion despite the possibly adverse kinetic resolution process. When dealing with gold(I)-catalyzed cycloisomerizations, chirality transfer from the precursor is another possible diverting pathway, which renders enantioconvergence challenging. Not surprisingly, enantioconvergent Au(I)-catalyzed processes have remained extremely rare. Herein we show that cavity-driven catalysis using ß-cyclodextrin-NHC-Au(I) complexes brings opportunities to conduct highly enantioconvergent cycloisomerizations of 1,5-enynes, -enynols, and, -enynyl esters.

2.
Chemistry ; 29(56): e202301666, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431686

RESUMO

Amine derivatives, including aniline and allylic amines, can be formed in a single-step process from benzene and an ammonia plasma in a microreactor. Different process parameters such as temperature, residence time, and plasma power were evaluated to improve the reaction yield and its selectivity toward aminated products and avoid hydrogenated or oligomerized products. In parallel, simulation studies of the process have been carried out to propose a global mechanism and gain a better understanding of the influence of the different process parameters. The exploration of diverse related alkenes showed that the double bonds, conjugation, and aromatization influenced the amination mechanism. Benzene was the best reactant for amination based on the lifetime of radical intermediates. Under optimized conditions, benzene was aminated in the absence of catalyst with a yield of 3.8 % and a selectivity of 49 % in various amino compounds.

3.
Chemistry ; 29(59): e202301780, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37494564

RESUMO

Metallaphotoredox catalyzed cross-coupling of an arylbromide (Ar-Br) with an alkyl bis(catecholato)silicate (R-Si⊖ ) has been analyzed in depth using a continuum of analytical techniques (EPR, fluorine NMR, electrochemistry, photophysics) and modeling (micro-kinetics and DFT calculations). These studies converged on the impact of four control parameters consisting in the initial concentrations of the iridium photocatalyst ([Ir]0 ), nickel precatalyst ([Ni]0 ) and silicate ([R-Si⊖ ]0 ) as well as light intensity I0 for an efficient reaction between Ar-Br and R-Si⊖ . More precisely, two regimes were found to be possibly at play. The first one relies on an equimolar consumption of Ar-Br with R-Si⊖ smoothly leading to Ar-R, with no side-product from R-Si⊖ and a second one in which R-Si⊖ is simultaneously coupled to Ar-Br and degraded to R-H. This integrative approach could serve as a case study for the investigation of other metallaphotoredox catalysis manifolds of synthetic significance.

4.
Angew Chem Int Ed Engl ; 62(31): e202306115, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278512

RESUMO

Benzylsilanes have found increasing applications in organic synthesis as bench-stable synthetic intermediates, yet are mostly produced by stoichiometric procedures. Catalytic alternatives based on the atom-economical silylation of benzylic C(sp3 )-H bonds remain scarcely available as specialized directing groups and catalytic systems are needed to outcompete the kinetically-favored silylation of C(sp2 )-H bonds. Herein, we describe the first general and catalytic-in-metal undirected silylation of benzylic C(sp3 )-H bonds under ambient, transition metal-free conditions using stable tert-butyl-substituted silyldiazenes (tBu-N=N-SiR3 ) as silicon source. The high activity and selectivity of the catalytic system, exemplified by the preparation of various mono- or gem-bis benzyl(di)silanes, originates from the facile generation of organopotassium reagents, including tert-butylpotassium.

5.
Chemistry ; 29(46): e202301610, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265455

RESUMO

N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.

6.
J Org Chem ; 88(5): 3297-3302, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787624

RESUMO

This article discloses a study on the well-known addition of propargyl acetates to olefins via an O-acyl migration/cyclopropanation sequence. Herein, we show that the stereochemical outcome of the olefin is strongly dependent on the gold catalyst and reaction parameters (concentration, temperature, and alkene partner equivalents); the E- and Z-isomers can be selectively formed by the judicious choice of reaction conditions.

7.
Nat Commun ; 13(1): 2295, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484155

RESUMO

Photosensitization of organogold intermediates is an emerging field in catalysis. In this context, an access to 2,3-disubstituted indoles from o-alkynyl aniline and iodoalkyne derivatives via a gold-catalyzed sequence under visible-light irradiation and in the absence of an exogenous photocatalyst was uncovered. A wide scope of the process is observed. Of note, 2-iodo-ynamides can be used as electrophiles in this cross-coupling reaction. The resulting N-alkynyl indoles lend themselves to post-functionalization affording valuable scaffolds, notably benzo[a]carbazoles. Mechanistic studies converge on the fact that a potassium sulfonyl amide generates emissive aggregates in the reaction medium. Static quenching of these aggregates by a vinylgold(I) intermediate yields to an excited state of the latter, which can react with an electrophile via oxidative addition and reductive elimination to forge the key C-C bond. This reactant-induced photoactivation of an organogold intermediate opens rich perspectives in the field of cross-coupling reactions.

8.
Org Lett ; 24(13): 2483-2487, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35324213

RESUMO

Mesoporous graphitic carbon nitride (mpg-CN) is introduced as a heterogeneous photocatalyst to perform dual photoredox- and nickel-catalyzed cross-coupling reactions between alkyl bis(catecholato)silicates as radical precursors and aryl or alkenyl bromides. The synergy between this recyclable photocatalyst and the broadly applied homogeneous nickel complex [Ni(dtbbpy)Br2] gives access to C(sp2)-C(sp3) cross-coupling products in a sustainable fashion. The recycled mpg-CN photocatalyst was analyzed by time-resolved emission spectroscopy and EPR spectroscopy.

9.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335132

RESUMO

Pentacoordinate silicon derivatives with a chloromethyl ligand are versatile compounds that are usually obtained from the corresponding tetravalent trialkoxy- or trihalogeno(chloromethyl)silane. We describe herein the synthesis of a chloromethylsilicate bearing two Martin's ligands readily obtained by addition of in situ generated chloromethyllithium to a spirosilane. The reactivity of this new species was evaluated and it has been established that the chloride is displaced by strong nucleophiles such as alkyllithiums and (hetero)aryllithiums. In Lewis acidic conditions, the pentacoordinate silicon species rearranges through a formal insertion of a methylene into one Si-C bond, to form a new tetravalent spirosilane with a six-membered ring. The same kind of rearrangement can be triggered also by addition of a Lewis base. The mechanism of the rearrangement in both conditions has been studied by means of DFT calculations.

10.
Photochem Photobiol Sci ; 21(4): 585-606, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218553

RESUMO

Organometallic catalysis under visible light activation is an emerging field. Activation by photosensitization or by direct light absorption of organometallic complexes can facilitate or trigger elementary steps in a catalytic cycle such as pre-catalyst reduction, oxidative addition, transmetalation and reductive elimination, as well as the ability of generating radical intermediates, widening the structural diversity offered by classical couplings. This perspective aims to highlight key examples of these light-induced or enhanced processes, with an emphasis on the underlying mechanisms involved.


Assuntos
Luz , Catálise
11.
Chem Soc Rev ; 51(4): 1470-1510, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35113115

RESUMO

Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.

12.
Angew Chem Int Ed Engl ; 61(3): e202113836, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34767686

RESUMO

Stereogenic silicon centres in functionalised tetracoordinated organosilanes generally exhibit very high configurational stability under neutral conditions. This stability drops completely when higher coordination states of the silicon centre are reached due to rapid substituent exchange. Herein we describe the synthesis of chiral and neutral pentacoordinate silicon derivatives with high configurational stability. The zwitterionic nature of these air- and water-tolerant species allows for the first time their direct and efficient optical resolution using chiral HPLC techniques. By means of this method, pentacoordinate silicon compounds exhibiting high Si-inversion have been obtained as single enantiomers. A rationalisation of the enantiomerisation pathways has been also carried out using DFT calculations.

13.
Angew Chem Int Ed Engl ; 60(36): 19879-19888, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243222

RESUMO

We report herein a new family of carbene ligands based on an indolizine-ylidene (Indolizy) moiety. The corresponding gold(I) complexes are easily obtained from the gold(I)-promoted cyclization of allenylpyridine precursors. Evaluation of the electronic properties by experimental methods and also by DFT calculations confirms strong σ-donating and π-accepting properties of these ligands. Cationization of the gold(I) complexes generates catalytic species that trigger diverse reactions of (poly)unsaturated precursors. When armed with a methylene phosphine oxide moiety on the stereogenic center adjacent to the nitrogen atom, the corresponding bifunctional carbene ligands give rise to highly enantioselective heterocyclizations. DFT calculations brought some rationalization and highlighted the critical roles played by the phosphine oxide group and the tosylate anion in the asymmetric cyclization of γ-allenols.

14.
Chemistry ; 27(34): 8782-8790, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33856711

RESUMO

While the generation of aryl radicals by photoredox catalysis under reductive conditions is well documented, it has remained challenging under an oxidative pathway. Because of the easy photo-oxidation of alkyl bis-catecholato silicates, a general study of phenyl silicates bearing substituted catecholate ligands has been achieved. The newly synthesized phenyl silicates have been fully characterized, and their reactivity has been explored. It was found that, thanks to the substitution of the catecholate moiety, notably with the 4-cyanocatecholato ligand, the phenyl radical could be generated and trapped. Computational studies provided a rationale for these findings.

15.
Chem Rec ; 21(5): 1119-1129, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33735507

RESUMO

Less than ten years of acquaintance with hypercoordinated silicon derivatives in our lab is described in this account. Martin's spirosilane derivatives open new opportunities as ligands and as agents for the activation of small molecules and bis-catecholato silicates have proven to be exquisite radical precursors in photoredox conditions for broad synthetic applications.

16.
Chem Soc Rev ; 49(23): 8501-8542, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057517

RESUMO

This review deals with some key synthetic developments based on the use of iron or cobalt complexes to promote radical reactivity which have been devised over the last decades. We have more particularly focused on reactions for which the impact of this chemistry has yielded greener alternatives to existing processes and also on new transformations, notably hydrogen atom transfer (HAT) triggered processes, which can be promoted through the use of metallic complexes. Preliminary synthetic developments based on the use of photoactive iron and cobalt complexes are also covered.

17.
Chemistry ; 26(68): 15901-15909, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32491219

RESUMO

A series of water-soluble encapsulated copper(I), silver(I) or gold(I) complexes based on NHC-capped permethylated cyclodextrins (ICyDMe ) were developed and used as catalysts in pure water for hydration, lactonization, hydroarylation and cycloisomerization reactions. ICyDMe ligands gave cavity-based high regioselectivity in hydroarylations, and high enantioselectivities in gold-catalyzed cycloisomerizations reactions giving up to 98 % ee in water. These ICyDMe are therefore useful ligands for selective catalysis in pure water.

18.
iScience ; 23(3): 100955, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32199288

RESUMO

Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis.

19.
Nat Chem ; 11(9): 797-805, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383980

RESUMO

The well-established oxidative addition-reductive elimination pathway is the most followed one in transition metal-catalysed cross-coupling reactions. While readily occurring with a series of transition metals, gold(I) complexes have shown some reluctance to undergo oxidative addition unless special sets of ligands on gold(I), reagents or reaction conditions are used. Here we show that under visible-light irradiation, an iridium photocatalyst triggers-via triplet sensitization-the oxidative addition of an alkynyl iodide onto a vinylgold(I) intermediate to deliver C(sp)2-C(sp) coupling products after reductive elimination. Mechanistic and modelling studies support that an energy-transfer event takes place, rather than a redox pathway. This particular mode of activation in gold homogenous catalysis was applied in several dual catalytic processes. Alkynylbenzofuran derivatives were obtained from o-alkynylphenols and iodoalkynes in the presence of catalytic gold(I) and iridium(III) complexes under blue light-emitting diode irradiation.

20.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31206813

RESUMO

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...