Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 16(9): 1248-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23892553

RESUMO

Neurotrophin receptors corresponding to vertebrate Trk, p75(NTR) or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogs unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit flies. Toll-6 and Toll-7 are expressed in the CNS throughout development and regulate locomotion, motor axon targeting and neuronal survival. DNT1 (also known as NT1 and spz2) and DNT2 (also known as NT2 and spz5) interact genetically with Toll-6 and Toll-7, and DNT1 and DNT2 bind to Toll-6 and Toll-7 promiscuously and are distributed in vivo in domains complementary to or overlapping with those of Toll-6 and Toll-7. We conclude that in fruit flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.


Assuntos
Sistema Nervoso Central , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptor 6 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Larva , Locomoção/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Ligação Proteica/genética , RNA Mensageiro/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptor 6 Toll-Like/genética , Receptor 7 Toll-Like/genética , Transfecção
2.
PLoS Biol ; 9(8): e1001133, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21912512

RESUMO

Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease.


Assuntos
Sistema Nervoso Central/lesões , Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Axônios/patologia , Diferenciação Celular/genética , Proliferação de Células , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Redes Reguladoras de Genes/genética , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Neurópilo/metabolismo , Neurópilo/patologia , Proteínas Nucleares/genética , Fosfoproteínas/genética , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
3.
PLoS Biol ; 6(11): e284, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19018662

RESUMO

Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects. By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spätzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Fatores de Crescimento Neural/fisiologia , Sistema Nervoso/embriologia , Neurônios/metabolismo , Animais , Axônios , Sequência de Bases , Morte Celular , Sequência Conservada , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Expressão Gênica , Humanos , Locomoção , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Neurônios/fisiologia , Análise de Sequência de Proteína
4.
Neuron Glia Biol ; 3(1): 75-88, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18634579

RESUMO

Prospero is required in dividing longitudinal glia (LG) during axon guidance; initially to enable glial division in response to neuronal contact, and subsequently to maintain glial precursors in a quiescent state with mitotic potential. Only Prospero-positive LG respond to neuronal ablation by over-proliferating, mimicking a glial-repair response. Prospero is distributed unequally through the progeny cells of the longitudinal glioblast lineage. Just before axon contact the concentration of Prospero is higher in two of the four progeny cells, and after axon guidance Prospero is present only in six out of ten progeny LG. Here we ask how Prospero is distributed unequally in these two distinct phases. We show that before neuronal contact, longitudinal glioblasts undergo invaginating divisions, perpendicular to the ectodermal layer. Miranda is required to segregate Prospero asymmetrically up to the four glial-progeny stage. After neuronal contact, Prospero is present in only the LG that activate Notch signalling in response to Serrate provided by commissural axons, and Numb is restricted to the glia that do not contain Prospero. As a result of this dual regulation of Prospero deployment, glia are coupled to the formation and maintenance of axonal trajectories.

5.
J Steroid Biochem Mol Biol ; 84(2-3): 343-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12711021

RESUMO

In pursuit of novel steroid sulfatase (STS) inhibitors devoid of estrogenicity, several D-ring modified steroid derivatives were synthesised. In vitro evaluation of the compounds identified two highly potent inhibitors, 4a and 4b, which were 18 times more active than estrone-3-O-sulfamate (EMATE), both having IC(50) values of ca. 1nM. These 16,17-seco-estra-1,3,5(10)-triene-16,17-imide derivatives were synthesised from estrone, via the intermediate 1, which was easily alkylated, deprotected and sulfamoylated affording the final compounds in high yields. In order to assess their biological profile, the selected inhibitors were tested for their in vivo inhibitory potency and estrogenicity in ovariectomised rats. After an oral dose of 10mg/kg per day for 5 days, 4a and 4b were found to inhibit rat liver steroid sulfatase by 99%. They were also devoid of estrogenic activity in the uterine weight gain assay, indicating that these two leads have therapeutic potential for the treatment of hormone-dependent breast cancer.


Assuntos
Arilsulfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estrona/análogos & derivados , Animais , Neoplasias da Mama/tratamento farmacológico , Cromatografia em Camada Fina , Estrogênios/metabolismo , Estrona/análise , Estrona/farmacologia , Feminino , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/enzimologia , Modelos Químicos , Ovário/fisiologia , Ratos , Ratos Wistar , Esteril-Sulfatase , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...