Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499194

RESUMO

This paper presents a proof-of-concept study on the biocolonization of 3D-printed hydroxyapatite scaffolds with mesenchymal stem cells (MSCs). Three-dimensional (3D) printed biomimetic bone structure made of calcium deficient hydroxyapatite (CDHA) intended as a future bone graft was made from newly developed composite material for FDM printing. The biopolymer polyvinyl alcohol serves in this material as a thermoplastic binder for 3D molding of the printed object with a passive function and is completely removed during sintering. The study presents the material, the process of fused deposition modeling (FDM) of CDHA scaffolds, and its post-processing at three temperatures (1200, 1300, and 1400 °C), as well it evaluates the cytotoxicity and biocompatibility of scaffolds with MTT and LDH release assays after 14 days. The study also includes a morphological evaluation of cellular colonization with scanning electron microscopy (SEM) in two different filament orientations (rectilinear and gyroid). The results of the MTT assay showed that the tested material was not toxic, and cells were preserved in both orientations, with most cells present on the material fired at 1300 °C. Results of the LDH release assay showed a slight increase in LDH leakage from all samples. Visual evaluation of SEM confirmed the ideal post-processing temperature of the 3D-printed FDM framework for samples fired at 1300 °C and 1400 °C, with a porosity of 0.3 mm between filaments. In conclusion, the presented fabrication and colonization of CDHA scaffolds have great potential to be used in the tissue engineering of bones.


Assuntos
Durapatita , Álcool de Polivinil , Durapatita/química , Álcool de Polivinil/química , Alicerces Teciduais/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Porosidade
2.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236060

RESUMO

In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use plastic material formulations should be available with tailored properties. Ideally, these kinds of materials should also be "home-compostable" to simplify their organic recycling. Therefore, materials based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the price of the final compound. They are intended for various applications, as documented by products made out of them. The produced materials are fully biodegradable under industrial composting conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are also fully biodegradable under home-composting conditions within a period of about six months. Experiments made under laboratory conditions were supported with data obtained from a kitchen waste pilot composter and from municipal composting plant experiments. Material properties, environmental conditions, and microbiology data were recorded during some of these experiments to document the biodegradation process and changes on the surface and inside the materials on a molecular level.

3.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631830

RESUMO

This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material's thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.

4.
Polymers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064971

RESUMO

Biopolymers have been the most frequently studied class of materials due to their biodegradability, renewability, and sustainability. The main aim of the presented study was to evaluate degradability of the polymer material blend which was immersed in different solutions. The present study included the production of three different mixtures of polylactic acid and polyhydroxybutyrate, each with a different content of triacetin, which was used as a plasticiser. Applying 3D printing technology, two types of cylindrical specimen were produced, i.e., a solid and a porous specimen, and subjected to in vitro natural degradation. The biodegradation process ran for 195 days in three different solutions (saline, phosphate-buffered saline (PBS), and Hank's solution) in stable conditions of 37 °C and a pH of 7.4, while the specimens were kept in an orbital motion to simulate the flow of fluids. The goal was to identify the effects of a solution type, specimen shape and material composition on the biodegradation of the materials. The monitored parameters included changes in the solution quantity absorbed by the specimens; morphological changes in the specimen structure; and mechanical properties. They were measured by compressive testing using the Inspekt5 Table Blue testing device. The experiment revealed that specimen porosity affected the absorption of the solutions. The non-triacetin materials exhibited a higher mechanical resistance to compression than the materials containing a plasticiser. The final result of the experiment indicated that the plasticiser-free specimens exhibited higher values of solution absorption, no formation of block cracks or bubbles, and the pH values of the solutions in which these materials were immersed remained neutral for the entire experiment duration; furthermore, these materials did not reduce pH values down to the alkaline range, as was the case with the solutions with the plasticiser-containing materials. Generally, in applications where high mechanical resistance, earlier degradation, and more stable conditions are required, the use of non-plasticiser materials is recommended.

5.
Materials (Basel) ; 13(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114009

RESUMO

This paper investigates the effect of plasticizer structure on especially the printability and mechanical and thermal properties of poly(3-hydroxybutyrate)-poly(lactic acid)-plasticizer biodegradable blends. Three plasticizers, acetyl tris(2-ethylhexyl) citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate), were first checked whether they were miscible with poly(3-hydroxybutyrate)-poly(lactic acid) (PHB-PLA) blends using a kneading machine. PHB-PLA-plasticizer blends of 60-25-15 (wt.%) were then prepared using a corotating meshing twin-screw extruder, and a single screw extruder was used for filament preparation for further three-dimensional (3D) fused deposition modeling (FDM) printing. These innovative eco-friendly PHB-PLA-plasticizer blends were created with a majority of PHB, and therefore, poor mechanical properties and thermal properties of neat PHB-PLA blends were improved by adding appropriate plasticizer. The plasticizer also influences the printability of blends, which was investigated, based on our new specific printability tests developed for the optimization of printing conditions (especially printing temperature). Three-dimensional printed test samples were used for heat deflection temperature measurements and Charpy and tensile-impact tests. Plasticizer migration was also investigated. The macrostructure of 3D printed samples was observed using an optical microscope to check the printing quality and printing conditions. Tensile tests of 3D printed samples (dogbones), as well as extruded filaments, showed that measured elongation at break raised, from 21% for non-plasticized PHB-PLA reference blends to 84% for some plasticized blends in the form of filaments and from 10% (reference) to 32% for plasticized blends in the form of printed dogbones. Measurements of thermal properties (using modulated differential scanning calorimetry and oscillation rheometry) also confirmed the plasticizing effect on blends. The thermal and mechanical properties of PHB-PLA blends were improved by the addition of appropriate plasticizer. In contrast, the printability of the PHB-PLA reference seems to be slightly better than the printability of the plasticized blends.

7.
Polymers (Basel) ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709099

RESUMO

The work is focused on the study of surface plasma treatment (DCSBD) of films from biodegradable polymers from renewable sources based on polylactic acid (PLA) and polyhydroxybutyrate (PHB). A 4-factor design of experiment was used where the selected variable parameters were the plasma device power, the time of plasma treatment, the ratio of PHB in the polymer blend with PLA, and the content of acetyl tributyl citrate (ATBC) plasticizer in the PLA + PHB blend. The surface total energy and the polar component were evaluated immediately after surface plasma treatment and after 5 h of sitting. Topography of foil surfaces was also studied by AFM. In terms of plasma power and activation time, the greatest increase in surface energy values was observed with a short plasma time of 2 s and a high power of 400 W. Increasing the content of ATBC in interaction with the high concentration of PHB in the blend results in a reduction in the difference of both the polar component and the total free surface energy.

8.
Molecules ; 24(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717444

RESUMO

The present study described the optimization of the extraction process with carbon dioxide in supercritical state for obtaining extractives, especially polyphenols from softwood bark, Norway spruce (Picea abies (L.) Karst.). Using a full 23 factorial design of experiments, the effect of varying the working parameters on the yield of extractives was studied for the following ranges: temperature 40-100 °C, pressure 1050-9000 psi (7.2-62 MPa), and concentration of EtOH/water co-solvent mixture 40-96.6%. In addition, total phenolics content and the antioxidant capacity of the spruce bark extract were determined. The optimum operating conditions for the yield of extractives were identified as 73 °C, 6465 psi (44.5 MPa), and 58% EtOH/water cosolvent concentration for a yield of 8.92%. The optimum conditions for achieving a total phenolics content of 13.89 mg gallic acid equivalent (GAE)/g dry extract were determined as: 45 °C, 1050 psi (7.2 MPa), and 96.6% EtOH/water mixture.


Assuntos
Picea/química , Casca de Planta/química , Polifenóis/química , Antioxidantes/química , Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Fracionamento Químico , Modelos Químicos , Estrutura Molecular , Pressão , Temperatura
9.
J Biotechnol ; 284: 123-130, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30171928

RESUMO

Additive manufacturing has a great potential for creating hard tissue substitutes, such as bone and cartilage, or soft tissues, such as vascular and skin grafts. This study is a pilot study for 3D printing of a new material mixture potentially used as a tubular substitute for urethra replacement. This new mixture is a blend of polylactic acid (PLA) and polyhydroxybutyrate (PHB). The basic aspect that affects the 3D printing process is correct material preparation and setting of 3D printer parameters. Selection of material and printing parameters depend on printing technology. The printing technology affects material behavior during printing process. The goal of preprocessing and 3D printing process is to provide stabile conditions during manufacturing to obtain usable printed samples. The study deals with preparation of material before 3D printing - material drying. Moisture in material affects material degradation and viscosity during printing. According to this, it is necessary to verify recommended drying parameters. Verification was performed by printing strand samples from dried and non-dried material and also by calculating and comparing respective viscosities that change in time. Printed strand clearly show that non-dried material degrades in less than 10 min, what leads to inappropriate application in short-time printing. Dried material shows significant stability and degrades slightly during selected time span. For metrological verification of material stability two sample types were designed and manufactured - a cubic sample which represents basic scaffold structures and a tubular one that serves as urethra substitution. Obtained results showed appropriate usability of selected technology and printing parameters for PLA / PHB material blend.


Assuntos
Hidroxibutiratos/química , Poliésteres/química , Engenharia Tecidual , Uretra , Elasticidade , Impressão Tridimensional , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...