Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(1): e2350422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873698

RESUMO

Utilizing an autoimmune bone marrow chimera model we determined that B cells depend critically on MHCII expression for participation in the germinal center, but cells displaying a 50% reduction in surface MHCII compete efficiently with their wild-type counterparts. This provides insights into the requirements for germinal center participation.


Assuntos
Linfócitos B , Centro Germinativo
2.
Front Immunol ; 14: 1258046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090594

RESUMO

Introduction: MHC class II molecules are essential for appropriate immune responses against pathogens but are also implicated in pathological responses in autoimmune diseases and transplant rejection. Previous studies have shed light on the systemic contributions of MHC haplotypes to the development and severity of autoimmune diseases. In this study, we addressed the B cell intrinsic MHC haplotype impact on follicular inclusion, germinal center (GC) participation and plasma cell (PC) differentiation in the context of systemic lupus erythematosus (SLE). Methods: We leveraged the 564Igi mouse model which harbors a B cell receptor knock-in from an autoreactive B cell clone recognizing ribonuclear components, including double-stranded DNA (dsDNA). This model recapitulates the central hallmarks of the early stages of SLE. We compared 564Igi heterozygous offspring on either H2b/b, H2b/d, or H2d/d background. Results: This revealed significantly higher germinal center (GC) B cell levels in the spleens of H2b/b and H2b/d as compared to H2d/d (p<0.0001) mice. In agreement with this, anti-dsDNA-antibody levels were higher in H2b/b and H2b/d than in H2d/d (p<0.0001), with H2b/b also being higher compared to H2b/d (p<0.01). Specifically, these differences held true both for autoantibodies derived from the knock-in clone and from wild-type (WT) derived clones. In mixed chimeras where 564Igi H2b/b, H2b/d and H2d/d cells competed head-to-head in the same environment, we observed a significantly higher inclusion of H2b/b cells in GC and PC compartments relative to their representation in the B cell repertoire, compared to H2b/d and H2d/d cells. Furthermore, in mixed chimeras in which WT H2b/b and WT H2d/d cells competed for inclusion in GCs associated with an epitope spreading process, H2b/b cells participated to a greater extent and contributed more robustly to the PC compartment. Finally, immature WT H2b/b cells had a higher baseline of BCRs with an autoreactive idiotype and were subject to more stringent negative selection at the transitional stage. Discussion: Taken together, our findings demonstrate that B cell intrinsic MHC haplotype governs their capacity for participation in the autoreactive response at multiple levels: follicular inclusion, GC participation, and PC output. These findings pinpoint B cells as central contributors to precipitation of autoimmunity.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Haplótipos , Centro Germinativo , Lúpus Eritematoso Sistêmico/genética , Diferenciação Celular
3.
Nat Commun ; 14(1): 6941, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907556

RESUMO

Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response.


Assuntos
Apresentação de Antígeno , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Epitopos , Antígenos de Histocompatibilidade Classe II/genética , Linfócitos B , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade
4.
ACS Meas Sci Au ; 3(3): 226-235, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360033

RESUMO

Non-invasive liquid biopsy assays for blood-circulating biomarkers of cancer allow both its early diagnosis and treatment monitoring. Here, we assessed serum levels of protein HER-2/neu, overexpressed in a number of aggressive cancers, by the cellulase-linked sandwich bioassay on magnetic beads. Instead of traditional antibodies we used inexpensive reporter and capture aptamer sequences, transforming the enzyme-linked immuno-sorbent assay (ELISA) into an enzyme-linked aptamer-sorbent assay (ELASA). The reporter aptamer was conjugated to cellulase, whose digestion of nitrocellulose film electrodes resulted in the electrochemical signal change. ELASA, optimized relative aptamer lengths (dimer vs monomer and trimer), and assay steps allowed 0.1 fM detection of HER-2/neu in the 10% human serum in 1.3 h. Urokinase plasminogen activator and thrombin as well as human serum albumin did not interfere, and liquid biopsy analysis of serum HER-2/neu was similarly robust but 4 times faster and 300 times cheaper than both electrochemical and optical ELISA. Simplicity and low cost of cellulase-linked ELASA makes it a perspective diagnostic tool for fast and accurate liquid biopsy detection of HER-2/neu and of other proteins for which aptamers are available.

5.
Nat Commun ; 14(1): 976, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813795

RESUMO

Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B , Ativação Linfocitária , Transdução de Sinais
6.
PLoS One ; 16(3): e0247501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730087

RESUMO

Murine bone marrow (BM) chimeras are a versatile and valuable research tool in stem cell and immunology research. Engraftment of donor BM requires myeloablative conditioning of recipients. The most common method used for mice is ionizing radiation, and Cesium-137 gamma irradiators have been preferred. However, radioactive sources are being out-phased worldwide due to safety concerns, and are most commonly replaced by X-ray sources, creating a need to compare these sources regarding efficiency and potential side effects. Prior research has proven both methods capable of efficiently ablating BM cells and splenocytes in mice, but with moderate differences in resultant donor chimerism across tissues. Here, we compared Cesium-137 to 350 keV X-ray irradiation with respect to immune reconstitution, assaying complete, syngeneic BM chimeras and a mixed chimera model of autoimmune disease. Based on dose titration, we find that both gamma and X-ray irradiation can facilitate a near-complete donor chimerism. Mice subjected to 13 Gy Cesium-137 irradiation and reconstituted with syngeneic donor marrow were viable and displayed high donor chimerism, whereas X-ray irradiated mice all succumbed at 13 Gy. However, a similar degree of chimerism as that obtained following 13 Gy gamma irradiation could be achieved by 11 Gy X-ray irradiation, about 85% relative to the gamma dose. In the mixed chimera model of autoimmune disease, we found that a similar autoimmune phenotype could be achieved irrespective of irradiation source used. It is thus possible to compare data generated, regardless of the irradiation source, but every setup and application likely needs individual optimization.


Assuntos
Doenças Autoimunes/imunologia , Células da Medula Óssea/efeitos da radiação , Transplante de Medula Óssea/métodos , Medula Óssea/efeitos da radiação , Radioisótopos de Césio , Raios gama , Quimera por Radiação/imunologia , Animais , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Irradiação Corporal Total , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...