Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 259: 124464, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996661

RESUMO

Magnetic resonance microimaging (MRµI) is an outstanding technique for studying water transfers in millimetric bio-based materials in a non-destructive and non-invasive manner. However, depending on the composition of the material, monitoring and quantification of these transfers can be very complex, and hence reliable image processing and analysis tools are necessary. In this study, a combination of MRµI and multivariate curve resolution-alternating least squares (MCR-ALS) is proposed to monitor the water ingress into a potato starch extruded blend containing 20% glycerol that was shown to have interesting properties for biomedical, textile, and food applications. In this work, the main purpose of MCR is to provide spectral signatures and distribution maps of the components involved in the water uptake process that occurs over time with various kinetics. This approach allowed the description of the system evolution at a global (image) and a local (pixel) level, hence, permitted the resolution of two waterfronts, at two different times into the blend that could not be resolved by any other mathematical processing method usually used in magnetic resonance imaging (MRI). The results were supplemented by scanning electron microscopy (SEM) observations in order to interpret these two waterfronts in a biological and physico-chemical point of view.


Assuntos
Glicerol , Solanum tuberosum , Análise Multivariada , Água/química , Análise dos Mínimos Quadrados , Amido/química , Imageamento por Ressonância Magnética
2.
Biomacromolecules ; 19(3): 838-848, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29401386

RESUMO

The behavior upon immersion in water of two types of starchy materials of biomedical relevance, amorphous potato starch and glycerol-plasticized potato starch, is analyzed in depth. Synchrotron X-ray scattering, specifically wide-angle X-ray scattering (WAXS), and magnetic resonance microimaging (MRµI) are used as very precise and nondestructive quantitative methods to monitor water transfers and structure changes in the samples, with refined spatial and kinetics results. The ingress of water in the cylinder-shaped samples can be inferred from both techniques, and from this, a diffusion mechanism is deduced for each sample type. Qualitatively, scattering and imaging give comparable results: plasticized samples are shown to behave close to a Fickian diffusion case, amorphous samples close to a case II. WAXS results also provide an in-depth knowledge of the crystalline structures associated to each step of the water ingress, and these are in turn correlated to water diffusion. To refine these observations, a recrystallized starch sample is also analyzed via WAXS. This study gives better insight into the structure of a material with a huge biomedical potential (as implants, for example), and for such applications, the behavior upon immersion in water is particularly relevant.


Assuntos
Solanum tuberosum/química , Amido/química , Água/química , Imageamento por Ressonância Magnética , Estrutura Molecular , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...