Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2498: 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727542

RESUMO

Animal venoms are among the most complex natural secretions known, comprising a mixture of bioactive compounds often referred to as toxins. Venom arsenals are predominately made up of cysteine-rich peptide toxins that manipulate molecular targets, such as ion channels and receptors, making these venom peptides attractive candidates for the development of therapeutics to benefit human health. With the rise of omic strategies that utilize transcriptomic, proteomic, and bioinformatic methods, we are able to identify more venom proteins and peptides than ever before. However, identification and characterization of bioactive venom peptides remains a significant challenge due to the unique chemical structure and enormous number of peptides found in each venom arsenal (upward of 200 per organism). Here, we introduce a rapid and user-friendly in silico bioinformatic pipeline for the de novo identification and characterization of raw RNAseq reads from venom glands to elucidate cysteine-rich peptides from the arsenal of venomous organisms.Implementation: This project develops a user-friendly automated bioinformatics pipeline via a Galaxy workflow to identify novel venom peptides from raw RNAseq reads of terebrid snails. While designed for venomous terebrid snails, with minor adjustments, this pipeline can be made universal to identify secreted disulfide-rich peptide toxins from any venomous organism.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Biologia Computacional , Cisteína , Dissulfetos , Peptídeos/química , Proteômica , Caramujos , Toxinas Biológicas/genética , Peçonhas/genética
2.
Front Bioeng Biotechnol ; 9: 734023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708024

RESUMO

Mucins are a highly glycosylated protein family that are secreted by animals for adhesion, hydration, lubrication, and other functions. Despite their ubiquity, animal mucins are largely uncharacterized. Snails produce mucin proteins in their mucous for a wide array of biological functions, including microbial protection, adhesion and lubrication. Recently, snail mucins have also become a lucrative source of innovation with wide ranging applications across chemistry, biology, biotechnology, and biomedicine. Specifically, snail mucuses have been applied as skin care products, wound healing agents, surgical glues, and to combat gastric ulcers. Recent advances in integrated omics (genomic, transcriptomic, proteomic, glycomic) technologies have improved the characterization of gastropod mucins, increasing the generation of novel biomaterials. This perspective describes the current research on secreted snail mucus, highlighting the potential of this biopolymer, and also outlines a research strategy to fulfill the unmet need of examining the hierarchical structures that lead to the enormous biological and chemical diversity of snail mucus genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...