Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(4): 2151-2166, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33534560

RESUMO

In this study, we describe the development of heterobivalent [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] radiotracers that display very high selectivity/specificity for gastrin-releasing peptide receptor (GRPR)-/prostate-specific membrane antigen (PSMA)-expressing cells. These studies include metallation, purification, characterization, and in vitro and in vivo evaluation of the new small-molecule-/peptide-based radiopharmaceuticals having utility for imaging and potentially therapy. Competitive displacement binding assays using PC-3 cells and LNCaP cell membranes showed high binding affinity for the GRPR or the PSMA. Biodistribution studies showed favorable excretion pharmacokinetics with high tumor uptake in PC-3 or PC-3 prostatic inhibin peptide (PIP) tumor-bearing mice. For example, tumor accumulation at the 1 h time point ranged from (4.74 ± 0.90) to (7.51 ± 2.61)%ID/g. Micro-single-photon emission computed tomography (microSPECT) molecular imaging investigations showed very high uptake in tumors with minimal accumulation of tracers in the surrounding collateral tissues in xenografted mice at 4 h postintravenous injection. In conclusion, [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] tracers displayed favorable pharmacokinetic and excretion profiles with high uptake and retention in tumors.


Assuntos
Complexos de Coordenação/farmacologia , Corantes Fluorescentes/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Glicoproteínas de Membrana/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Receptores da Bombesina/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Complexos de Coordenação/farmacocinética , Corantes Fluorescentes/farmacocinética , Humanos , Radioisótopos de Índio/química , Lutécio/química , Masculino , Camundongos , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Medicina de Precisão/métodos , Radioisótopos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
2.
Nucl Med Biol ; 70: 53-66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30933866

RESUMO

INTRODUCTION: Peripheral mu (µ) opioid receptors are implicated in pain, bowel dysfunction and the progression of certain cancers. In an effort to identify radioligands well suited for imaging these peripheral sites, we have prepared and evaluated four hydrophilic 111In labeled DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) conjugated µ tetrapeptides. METHODS: Peptides were prepared by solid-phase techniques, using orthogonal strategies to achieve branching to DOTA, and then characterized by HPLC, mass spectroscopy and amino acid analysis. Scaffolds included novel peptide H-Dmt-D-Ala-Phe-Orn-NH2 (DAPO), where Dmt = 2',6'-dimethyltyrosine, and known peptide H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA). Constructs had DOTA conjugation at the Orn4 or Lys4 side chains, or to the C-terminal through a hexanoic acid-lysine linker. Indium(III) complexation and 111In radiolabeling were accomplished by standard methods. Protein binding and Log D7.4 were determined. Binding and pharmacological profiles were obtained in vitro. Biodistribution and radiometabolite studies were conducted using male CD-1 mice. RESULTS: All four indium(III)-DOTA conjugates derived from DAPO and [Dmt1]DALDA showed good selectivity and subnanomolar affinity for µ opioid receptors. One radioligand, H-Dmt-D-Ala-Phe-Orn(δ-[111In]In-DOTA)-NH2, showed 25% specific binding in vivo to µ sites in mouse gut. Notably, this was the least polar of the series, and also showed low sensitivity to modulation of binding by sodium ions. All radioligands showed high kidney uptake of radiometabolites. CONCLUSIONS: Visualizing peripheral µ opioid receptors using 111In labeled DOTA-conjugated tetrapeptides appears feasible, but structural modifications to enhance specific binding and metabolic stability, as well as to reduce kidney uptake, will be required. ADVANCES IN KNOWLEDGE: This study shows in vivo labeling of peripheral µ opioid receptors by a tetrapeptide radioligand, and provides information that should prove useful in the design of peptide radioligands having optimal properties.


Assuntos
Desenho de Fármacos , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos de Índio , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores Opioides mu/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Química Sintética , Marcação por Isótopo , Ligantes , Masculino , Camundongos , Oligopeptídeos/síntese química , Oligopeptídeos/farmacocinética , Ligação Proteica , Especificidade por Substrato , Distribuição Tecidual
3.
Pharmacol Res ; 142: 87-100, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30721730

RESUMO

ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax) are under intensive preclinical and clinical investigation as treatments for hematologic and other malignancies. These small molecules mimic pro-death B-cell lymphoma-2 (Bcl-2) Homology 3 (BH3) domain-only proteins. They also bear a structural resemblance to certain sigma (σ) receptor ligands. Moreover, the Bcl-2 and σ receptor protein families are both located primarily at the endoplasmic reticulum, mediate cell death and survival through protein-protein interactions, and physically associate. Accordingly, we examined the ability of the ABT series of BH3 mimetics to interact with σ receptors using radioligand-binding techniques. Negative allosteric modulation of [3H](+)-pentazocine, an agonist, binding to σ1 receptors in guinea pig brain membranes was observed for ABT-737, ABT-263 and ABT-199. Findings included reduction of specific binding to distinct plateaus in concentration-dependent fashion, significant slowing of radioligand dissociation kinetics, and decreases in radioligand affinity with no or modest changes in maximal receptor densities. Using a ternary complex model, dissociation constants (KX) for modulator binding to the σ1 receptor ranged from 1 to 2.5 µM, while negative cooperativity factors (α), representing the changes in affinity of ligand and modulator when bound as a ternary complex with the receptor, ranged from 0.15 to 0.42. These observations were extended and reinforced by studies using intact small cell (NCI-H69) and non-small cell (NCI-H23) lung cancer cells, and by using an antagonist σ1 receptor radioligand, E-N-1-(3'-[125I]iodoallyl)-N'-4-(3″,4″-dimethoxyphenethyl)piperazine, in mouse brain membranes. By contrast, exploratory studies indicate marked enhancement of the σ2 receptor binding of [3H]1,3-di-(o-tolyl)guanidine/(+)-pentazocine in NCI-H23 cells and guinea pig brain membranes. These findings raise intriguing questions regarding mechanism and potential functional outcomes.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Nitrofenóis/farmacologia , Receptores sigma/metabolismo , Sulfonamidas/farmacologia , Regulação Alostérica , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cobaias , Humanos , Masculino , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Ensaio Radioligante , Receptor Sigma-1
4.
Tetrahedron ; 72(40): 6127-6135, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28190898

RESUMO

Radiolabeled diprenorphine (DPN) and analogs are widely used ligands for non-invasive brain imaging of opioid receptors. To develop complementary radioligands optimized for studies of the peripheral opioid receptors, we prepared a pair of hydrophilic DPN derivatives, conjugated to the macrocyclic chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), for complexation with trivalent metals. The non-radioactive indium (III) complexes, tethered to the C6-oxygen position of the DPN scaffold by 6- to 9-atom spacers, displayed high affinities for binding to µ, δ and κ opioid receptors in vitro. Use of the 9-atom linker conferred picomolar affinities equipotent to those of the parent ligand DPN. The [111In]-labeled complexes were prepared in good yield (>70%), with high radiochemical purity (~99%) and high specific radioactivity (>4000 mCi/µmol). Their log D7.4 values were -2.21 to -1.66. In comparison, DPN is lipophilic, with a log D7.4 of +2.25. Further study in vivo is warranted to assess the suitability of these [111In]-labeled DPN-DOTA conjugates for imaging trials.

5.
Synapse ; 70(3): 98-111, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26618331

RESUMO

Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (-)-cocaine. We studied a key step, the ability of (-)-cocaine to occupy σ1 receptors in vivo, using CD-1(®) mice and the novel radioligand [(125) I]E-N-1-(3'-iodoallyl)-N'-4-(3",4"-dimethoxyphenethyl)-piperazine ([(125) I]E-IA-DM-PE-PIPZE). (-)-Cocaine displayed an ED50 of 68 µmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 µmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 µmol/kg for (-)-cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [(125) I]3ß-(4-iodophenyl)tropan-2ß-carboxylic acid isopropyl ester ([(125) I]RTI-121) binding. A chief finding is the relatively small potency difference between (-)-cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (-)-cocaine with σ1 receptors were assessed further using [(125) I]E-IA-DM-PE-PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (-)-Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E-IA-DM-PE-PIPZE gave an ED50 of 0.23 µmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 µmol/kg (i.p.) dose attenuated (-)-cocaine-induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E-IA-DM-PE-PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD-1(®) mouse brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Receptores sigma/metabolismo , Animais , Autorradiografia , Ligação Competitiva , Cocaína/farmacocinética , Inibidores da Captação de Dopamina/farmacocinética , Relação Dose-Resposta a Droga , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Receptor Sigma-1
6.
Eur J Pharmacol ; 762: 118-26, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26004528

RESUMO

This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2µmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo.


Assuntos
Pulmão/metabolismo , Ensaio Radioligante , Receptores sigma/metabolismo , Animais , Membrana Celular/metabolismo , Pulmão/citologia , Masculino , Camundongos
7.
Bioorg Med Chem ; 23(1): 222-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25468036

RESUMO

Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions.


Assuntos
Éter/química , Piperazinas/química , Receptores sigma/química , Éter/metabolismo , Piperazinas/metabolismo , Ligação Proteica , Receptores sigma/agonistas , Receptores sigma/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Receptor Sigma-1
8.
J Pharmacol Exp Ther ; 351(1): 153-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100754

RESUMO

Psychostimulant effects of cocaine are mediated partly by agonist actions at sigma-1 (σ1) receptors. Selective σ1 receptor antagonists attenuate these effects and provide a potential avenue for pharmacotherapy. However, the selective and high affinity σ1 antagonist PD144418 (1,2,3,6-tetrahydro-5-[3-(4-methylphenyl)-5-isoxazolyl]-1-propylpyridine) has been reported not to inhibit cocaine-induced hyperactivity. To address this apparent paradox, we evaluated aspects of PD144418 binding in vitro, investigated σ1 receptor and dopamine transporter (DAT) occupancy in vivo, and re-examined effects on locomotor activity. PD144418 displayed high affinity for σ1 sites (Ki 0.46 nM) and 3596-fold selectivity over σ2 sites (Ki 1654 nM) in guinea pig brain membranes. No appreciable affinity was noted for serotonin and norepinephrine transporters (Ki >100 µM), and the DAT interaction was weak (Ki 9.0 µM). In vivo, PD144418 bound to central and peripheral σ1 sites in mouse, with an ED50 of 0.22 µmol/kg in whole brain. No DAT occupancy by PD144418 (10.0 µmol/kg) or possible metabolites were observed. At doses that did not affect basal locomotor activity, PD144418 (1, 3.16, and 10 µmol/kg) attenuated cocaine-induced hyperactivity in a dose-dependent manner in mice. There was good correlation (r(2) = 0.88) of hyperactivity reduction with increasing cerebral σ1 receptor occupancy. The behavioral ED50 of 0.79 µmol/kg corresponded to 80% occupancy. Significant σ1 receptor occupancy and the ability to mitigate cocaine's motor stimulatory effects were observed for 16 hours after a single 10.0 µmol/kg dose of PD144418.


Assuntos
Cocaína/farmacologia , Isoxazóis/farmacologia , Córtex Motor/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacocinética , Piridinas/farmacologia , Receptores sigma/metabolismo , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Cobaias , Hipercinese/metabolismo , Isoxazóis/química , Isoxazóis/farmacocinética , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Córtex Motor/metabolismo , Antagonistas de Entorpecentes/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ligação Proteica , Piridinas/química , Piridinas/farmacocinética , Receptores sigma/antagonistas & inibidores , Receptores sigma/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor Sigma-1
9.
Synapse ; 68(2): 73-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123353

RESUMO

Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects.


Assuntos
Benzamidas/farmacologia , Cocaína/farmacologia , Isoquinolinas/farmacologia , Locomoção/efeitos dos fármacos , Receptores sigma/antagonistas & inibidores , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Ligantes , Camundongos , Ligação Proteica , Receptores sigma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Receptor Sigma-1
10.
Nucl Med Biol ; 39(3): 401-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22172395

RESUMO

INTRODUCTION: Sigma-1 (σ(1)) receptor radioligands are useful for basic pharmacology studies and for imaging studies in neurology, psychiatry and oncology. We derived a hybrid structure, N-1-allyl-N´-4-phenethylpiperazine, from known ligands TPCNE and SA4503 for use as a scaffold for development of radioiodinated σ(1) receptor ligands. METHODS: E-and Z-N-1-(3'-iodoallyl)-N´-4-(3″,4″-dimethoxyphenethyl)-piperazine (E-1 and Z-1), N-1-allyl-N´-4-(3',4'-dimethoxyphenethyl)-piperazine (2) and E-N-1-(3'-iodoallyl)-N´-4-(3″-methoxy-4'´-hydroxyphenethyl)-piperazine (3) were synthesized. Affinities for σ(1) and σ(2) receptors were determined. [(125)I]E-1 and [(125)I]Z-1 were prepared and evaluated in vivo in mice. [(125)I]E-1 was further evaluated in σ(1) receptor binding assays in vitro. RESULTS: E-1 displayed moderately high apparent affinity (15 nM) for σ(1) sites and 84-fold selectivity against σ(2) sites. Z-1 showed similar σ(1) affinity, but only 23-fold selectivity. In contrast, 2 exhibited poor binding to both subtypes, while 3 had good affinities but poor selectivity. E-1 profiled as a probable antagonist in the phenytoin shift assay. [(125)I]E-1 and [(125)I]Z-1 were prepared in good yields and with high specific radioactivities. Log D(7.4) values (2.25 and 2.27) fall within the optimal range for in vivo studies. Both radioligands selectively labeled σ(1) receptors in mouse brain and peripheral organs in vivo. [(125)I]E-1 showed a higher level of specific binding than [(125)I]Z-1 and displayed good metabolic stability. Further, [(125)I]E-1 selectively labeled σ(1) receptors in mouse brain homogenates (K(d) 3.79 nM; B(max)=599 fmol/mg protein). CONCLUSIONS: [(125)I]E-1 is a selective σ(1) receptor radioligand that exhibits properties amenable to in vitro and in vivo studies, with possible extension to single photon emission computed tomography using iodine-123.


Assuntos
Radioisótopos do Iodo/química , Piperazinas/química , Receptores sigma/análise , Animais , Ligação Competitiva , Química Encefálica , Ligantes , Masculino , Camundongos , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/farmacocinética , Ligação Proteica , Ensaio Radioligante/métodos , Receptores sigma/metabolismo , Distribuição Tecidual , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...