Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathog ; 2016: 3437214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144029

RESUMO

Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted.

2.
FEMS Microbiol Ecol ; 92(4): fiw047, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26976844

RESUMO

Enterococci are fecal indicator bacteria used to monitor fecal pollution of recreational waters. When enterococci levels exceed health standards, fecal pollution is assumed as the cause. Enterococci growing on plants limit their usefulness as fecal indicator bacteria. Here we examined enterococcal growth on eelgrass in Mission Bay, CA where enterococci levels have exceeded water quality thresholds. A total of 69 eelgrass samples were collected from six sites, shaken to remove enterococci attached to plant surfaces and the eluant filtered onto culture media. Isolates were then identified to species using biochemical methods, and DNA typing by pulsed-field gel electrophoresis was done to assess clonality of strains. Enterococci concentrations among eelgrass ranged from 8 to 14 000 CFU g(-1) dry weight. The most predominant enterococcal species found were Enterococcus casseliflavus and E. hirae followed by E. faecalis. Cluster analysis indicated a high level of clonality among isolates across all species, with clonal isolates consistently associated with individual eelgrass samples. Finding high densities of E. casseliflavus, E. hirae and E. faecalis on eelgrass that included clonal strains indicates the capability of enterococcal growth on eelgrass. Amplification of enterococci on eelgrass presents challenges for regulatory agencies that interpret elevated levels of these bacteria as an indication of fecal pollution.


Assuntos
Enterococcus/classificação , Enterococcus/crescimento & desenvolvimento , Poluição da Água/análise , Qualidade da Água , Zosteraceae/microbiologia , California , Eletroforese em Gel de Campo Pulsado , Enterococcus/genética , Fezes/microbiologia , Parques Recreativos , Microbiologia da Água
3.
J Environ Public Health ; 2013: 848049, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840233

RESUMO

EPA Method 1600 and Enterolert are used interchangeably to measure Enterococcus for fecal contamination of public beaches, but the methods occasionally produce different results. Here we assess whether these differences are attributable to the selectivity for certain species within the Enterococcus group. Both methods were used to obtain 1279 isolates from 17 environmental samples, including influent and effluent of four wastewater treatment plants, ambient marine water from seven different beaches, and freshwater urban runoff from two stream systems. The isolates were identified to species level. Detection of non-Enterococcus species was slightly higher using Enterolert (8.4%) than for EPA Method 1600 (5.1%). E. faecalis and E. faecium, commonly associated with human fecal waste, were predominant in wastewater; however, Enterolert had greater selectivity for E. faecalis, which was also shown using a laboratory-created sample. The same species selectivity was not observed for most beach water and urban runoff samples. These samples had relatively higher proportions of plant associated species, E. casseliflavus (18.5%) and E. mundtii (5.7%), compared to wastewater, suggesting environmental inputs to beaches and runoff. The potential for species selectivity among water testing methods should be considered when assessing the sanitary quality of beaches so that public health warnings are based on indicators representative of fecal sources.


Assuntos
Enterococcus/isolamento & purificação , Monitoramento Ambiental/métodos , Água do Mar/microbiologia , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Praias , California , Filtração/métodos , Fluorescência , Glucosídeos/metabolismo , Indóis/metabolismo , Estados Unidos , United States Environmental Protection Agency
4.
Appl Environ Microbiol ; 78(2): 305-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081569

RESUMO

Enterococcus species composition was determined each hour for 72 h at a polluted marine beach in Avalon, Santa Catalina Island, CA. Species composition during the day was significantly different from that at night, based on an analysis of similarity. Enterococcus faecium and E. faecalis were more prevalent at night than during the day, while E. hirae and other Enterococcus species were more prevalent during the day than the night. Enterococcus spp. containing a yellow pigment were more common during the day than the night, suggesting that the pigmented phenotype may offer a competitive advantage under sunlit conditions. A laboratory microcosm experiment established that the pigmented E. casseliflavus isolate and a pigmented E. faecalis isolate recovered from the field site decay slower than a nonpigmented E. faecalis isolate in a solar simulator in simulated, clear seawater. This further supports the idea that the yellow carotenoid pigment in Enterococcus provides protection under sunlit conditions. The findings are in accordance with previous work with other carotenoid-containing nonphotosynthetic and photosynthetic bacteria that suggests that the carotenoid is able to quench reactive oxygen species capable of causing photoinactivation and photostress. The results suggest that using enterococcal species composition as a microbial source tracking tool may be hindered by the differential environmental persistence of pigmented and nonpigmented enterococci.


Assuntos
Biota , Carotenoides/metabolismo , Enterococcus/classificação , Enterococcus/efeitos da radiação , Pigmentos Biológicos/metabolismo , Água do Mar/microbiologia , Poluição da Água , Enterococcus/crescimento & desenvolvimento , Enterococcus/isolamento & purificação , Oceanos e Mares , Luz Solar
5.
Can J Microbiol ; 51(12): 1027-37, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16462861

RESUMO

Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.


Assuntos
Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/isolamento & purificação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Plantas/microbiologia , DNA Bacteriano/genética , Ecossistema , Eletroforese em Gel de Campo Pulsado , Enterococcus faecalis/classificação , Enterococcus faecalis/genética , Escherichia coli/classificação , Escherichia coli/genética , Indiana , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...