Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1006618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247662

RESUMO

Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.

2.
Front Chem ; 10: 782608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529696

RESUMO

The trypsin-like proteases (TLPs) play widespread and diverse roles, in a host of physiological and pathological processes including clot dissolution, extracellular matrix remodelling, infection, angiogenesis, wound healing and tumour invasion/metastasis. Moreover, these enzymes are involved in the disruption of normal lung function in a range of respiratory diseases including allergic asthma where several allergenic proteases have been identified. Here, we report the synthesis of a series of peptide derivatives containing an N-alkyl glycine analogue of arginine, bearing differing electrophilic leaving groups (carbamate and triazole urea), and demonstrate their function as potent, irreversible inhibitors of trypsin and TLPs, to include activities from cockroach extract. As such, these inhibitors are suitable for use as activity probes (APs) in activity-based profiling (ABP) applications.

3.
PLoS One ; 11(7): e0159868, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459298

RESUMO

Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause disease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consisting of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar compound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aeruginosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/toxicidade , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Exotoxinas/toxicidade , Furina/antagonistas & inibidores , Oligopeptídeos/farmacologia , Organofosfonatos/farmacologia , Antibacterianos/síntese química , Células Cultivadas , Inibidores Enzimáticos/síntese química , Células Epiteliais/microbiologia , Humanos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Organofosfonatos/síntese química , Organofosfonatos/química , Pseudomonas aeruginosa/patogenicidade
4.
Am J Respir Crit Care Med ; 194(6): 701-10, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27014936

RESUMO

RATIONALE: In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. OBJECTIVES: To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. METHODS: Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. MEASUREMENTS AND MAIN RESULTS: QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. CONCLUSIONS: QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.


Assuntos
Arginina/análogos & derivados , Fibrose Cística/tratamento farmacológico , Depuração Mucociliar/efeitos dos fármacos , Organofosfonatos/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/efeitos dos fármacos , Arginina/farmacologia , Células Cultivadas , Humanos , Depuração Mucociliar/fisiologia , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...