Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Cytogenet Genome Res ; : 1-11, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815552

RESUMO

INTRODUCTION: Rhipidomys is the second most specious and the most widespread genus of the tribe Thomasomyini. Chromosomal data have been an important tool in the taxonomy of the group that presents low variability of diploid number (2n) and highly variable fundamental numbers (FNs). Despite such diversity, the genus has been studied mainly by classical and banding cytogenetic techniques. METHODS: This study performed a comparative study between R. emiliae (2n = 44, FN = 52), R. macrurus (2n = 44, FN = 49), R. nitela (2n = 50, FN = 71), and R. mastacalis (2n = 44, FN = 72) using chromosome painting probes of two Oryzomyini species. RESULTS: Our analysis revealed pericentric inversion as the main rearrangement involved in the karyotype evolution of the group, although tandem fusions/fissions were also detected. In addition, we detected eight syntenic associations exclusive of the genus Rhipidomys, and three syntenic associations shared between species of the tribe Thomasomyini and Oryzomyini. CONCLUSION: Comparative cytogenetic analysis by ZOO-FISH on genus Rhipidomys supports a pattern of chromosomal rearrangement already suggested by comparative G-banding. However, the results suggest that karyotype variability in the genus could also involve the occurrence of an evolutionary new centromere.

2.
Sci Rep ; 14(1): 545, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177653

RESUMO

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Assuntos
Roedores , Sigmodontinae , Animais , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversão Cromossômica , Coloração Cromossômica
3.
PLoS One ; 18(11): e0294776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011093

RESUMO

Pelecaniformes is an order of waterbirds that exhibit diverse and distinct morphologies. Ibis, heron, pelican, hammerkop, and shoebill are included within the order. Despite their fascinating features, the phylogenetic relationships among the families within Pelecaniformes remain uncertain and pose challenges due to their complex evolutionary history. Their karyotypic evolution is another little-known aspect. Therefore, to shed light on the chromosomal rearrangements that have occurred during the evolution of Pelecaniformes, we have used whole macrochromosome probes from Gallus gallus (GGA) to show homologies on three species with different diploid numbers, namely Cochlearius cochlearius (2n = 74), Eudocimus ruber (2n = 66), and Syrigma sibilatrix (2n = 62). A fusion between GGA6 and GGA7 was found in C. cochlearius and S. sibilatrix. In S. sibilatrix the GGA8, GGA9 and GGA10 hybridized to the long arms of biarmed macrochromosomes, indicating fusions with microchromosomes. In E. ruber the GGA7 and GGA8 hybridized to the same chromosome pair. After comparing our painting results with previously published data, we show that distinct chromosomal rearrangements have occurred in different Pelecaniformes lineages. Our study provides new insight into the evolutionary history of Pelecaniformes and the chromosomal changes involving their macrochromosomes and microchromosomes that have taken place in different species within this order.


Assuntos
Galinhas , Coloração Cromossômica , Humanos , Animais , Filogenia , Cariotipagem , Cariótipo , Galinhas/genética , Aberrações Cromossômicas , Evolução Molecular
4.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
5.
Sci Rep ; 13(1): 15502, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726346

RESUMO

The classical hypothesis proposes that the lack of recombination on sex chromosomes arises due to selection for linkage between a sex-determining locus and sexually antagonistic loci, primarily facilitated by inversions. However, cessation of recombination on sex chromosomes could be attributed also to neutral processes, connected with other chromosome rearrangements or can reflect sex-specific recombination patterns existing already before sex chromosome differentiation. Three Coleonyx gecko species share a complex X1X1X2X2/X1X2Y system of sex chromosomes evolved via a fusion of the Y chromosome with an autosome. We analyzed synaptonemal complexes and sequenced flow-sorted sex chromosomes to investigate the effect of chromosomal rearrangement on recombination and differentiation of these sex chromosomes. The gecko sex chromosomes evolved from syntenic regions that were also co-opted also for sex chromosomes in other reptiles. We showed that in male geckos, recombination is less prevalent in the proximal regions of chromosomes and is even further drastically reduced around the centromere of the neo-Y chromosome. We highlight that pre-existing recombination patterns and Robertsonian fusions can be responsible for the cessation of recombination on sex chromosomes and that such processes can be largely neutral.


Assuntos
Lagartos , Feminino , Animais , Masculino , Lagartos/genética , Cromossomos Sexuais/genética , Cromossomo Y/genética , Movimento Celular , Recombinação Genética
6.
Genetica ; 151(4-5): 267-279, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656321

RESUMO

This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta monticola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean species of this genus, which included several biarmed metacentrics and a Z1Z2W multiple sex-chromosome system. With the possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the W chromosome in Lacertini.


Assuntos
Lagartos , Cromossomos Sexuais , Animais , Hibridização Genômica Comparativa , Cariotipagem , Cariótipo , Cromossomos Sexuais/genética , Lagartos/genética , Evolução Molecular
7.
Sci Rep ; 13(1): 11992, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491593

RESUMO

The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.


Assuntos
Cervos , Rena , Bovinos , Animais , Cervos/genética , Ruminantes/genética , Cromossomos , Cervo Muntjac/genética , Cromossomo X/genética , Rena/genética
8.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233800

RESUMO

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Assuntos
Arvicolinae , Sigmodontinae , Animais , Ratos , Sigmodontinae/genética , Arvicolinae/genética , Áreas Alagadas , Sequências Repetitivas de Ácido Nucleico/genética , Cariótipo , DNA Satélite/genética , Elementos de DNA Transponíveis/genética
9.
Genes (Basel) ; 14(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107574

RESUMO

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Assuntos
Cromossomos , Diploide , Animais , Filogenia , Teorema de Bayes , Galinhas/genética
10.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833416

RESUMO

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Assuntos
Carnívoros , Mustelidae , Animais , Mustelidae/genética , Heterocromatina , Hibridização in Situ Fluorescente , Eucromatina , Carnívoros/genética , Estruturas Cromossômicas
11.
Animals (Basel) ; 13(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766223

RESUMO

Repetitive DNA sequences constitute a sizeable portion of animal genomes, and tandemly organized satellite DNAs are a major part of them. They are usually located in constitutive heterochromatin clusters in or near the centromeres or telomeres, and less frequently in the interstitial parts of chromosome arms. They are also frequently accumulated in sex chromosomes. The function of these clusters is to sustain the architecture of the chromosomes and the nucleus, and to regulate chromosome behavior during mitosis and meiosis. The study of satellite DNA diversity is important for understanding sex chromosome evolution, interspecific hybridization, and speciation. In this work, we identified four satellite DNA families in the genomes of two snakes from different families: Daboia russelii (Viperidae) and Pantherophis guttatus (Colubridae) and determine their chromosomal localization. We found that one family is localized in the centromeres of both species, whereas the others form clusters in certain chromosomes or subsets of chromosomes. BLAST with snake genome assemblies showed the conservation of such clusters, as well as a subtle presence of the satellites in the interspersed manner outside the clusters. Overall, our results show high conservation of satellite DNA in snakes and confirm the "library" model of satellite DNA evolution.

12.
BMC Genomics ; 24(1): 38, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694120

RESUMO

BACKGROUND: Chromosomal painting in manatees has clarified questions about the rapid evolution of sirenians within the Paenungulata clade. Further cytogenetic studies in Afrotherian species may provide information about their evolutionary dynamics, revealing important insights into the ancestral karyotype in the clade representatives. The karyotype of Trichechus inunguis (TIN, Amazonian manatee) was investigated by chromosome painting, using probes from Trichechus manatus latirostris (TML, Florida manatee) to analyze the homeologies between these sirenians. RESULTS: A high similarity was found between these species, with 31 homologous segments in TIN, nineteen of which are whole autosomes, besides the X and Y sex chromosomes. Four chromosomes from TML (4, 6, 8, and 9) resulted in two hybridization signals, totaling eight acrocentrics in the TIN karyotype. This study confirmed in TIN the chromosomal associations of Homo sapiens (HSA) shared in Afrotheria, such as the 5/21 synteny, and in the Paenungulata clade with the syntenies HSA 2/3, 8/22, and 18/19, in addition to the absence of HSA 4/8 common in eutherian ancestral karyotype (EAK). CONCLUSIONS: TIN shares more conserved chromosomal signals with the Paenungulata Ancestral Karyotype (APK, 2n = 58) than Procavia capensis (Hyracoidea), Loxodonta africana (Proboscidea) and TML (Sirenia), where TML presents less conserved signals with APK, demonstrating that its karyotype is the most derived among the representatives of Paenungulata. The chromosomal changes that evolved from APK to the T. manatus and T. inunguis karyotypes (7 and 4 changes, respectively) are more substantial within the Trichechus genus compared to other paenungulates. Among these species, T. inunguis presents conserved traits of APK in the American manatee genus. Consequently, the karyotype of T. manatus is more derived than that of T. inunguis.


Assuntos
Trichechus inunguis , Trichechus manatus , Animais , Humanos , Cariótipo , Sirênios/genética , Trichechus/genética , Trichechus inunguis/genética , Trichechus manatus/genética
13.
Cytogenet Genome Res ; 162(6): 312-322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36463851

RESUMO

The family Cervidae is the second most diverse family in the infraorder Pecora and is characterized by a striking variability in the diploid chromosome numbers among species, ranging from 6 to 70. Chromosomal rearrangements in Cervidae have been studied in detail by chromosome painting. There are many comparative cytogenetic data for both subfamilies (Cervinae and Capreolinae) based on homologies with chromosomes of cattle and Chinese muntjac. Previously it was found that interchromosomal rearrangements are the major type of rearrangements occurring in the Cervidae family. Here, we build a detailed chromosome map of a female reindeer (Rangifer tarandus, 2n = 70, Capreolinae) and a female black muntjac (Muntiacus crinifrons, 2n = 8, Cervinae) with dromedary homologies to find out what other types of rearrangements may have underlined the variability of Cervidae karyotypes. To track chromosomal rearrangements and the distribution of nucleolus organizer regions not only during Cervidae but also Pecora evolution, we summarized new data and compared them with chromosomal maps of other already studied species. We discuss changes in the pecoran ancestral karyotype in the light of new painting data. We show that intrachromosomal rearrangements in autosomes of Cervidae are more frequent than previously thought: at least 13 inversions in evolutionary breakpoint regions were detected.


Assuntos
Cervos , Cervo Muntjac , Animais , Bovinos/genética , Feminino , Cervo Muntjac/genética , Cervos/genética , Cariotipagem , Cariótipo , Coloração Cromossômica , Aberrações Cromossômicas , Evolução Molecular
14.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555478

RESUMO

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Assuntos
Lagartos , Animais , Masculino , Sintenia/genética , Lagartos/genética , Cromossomos Sexuais/genética , Cromossomos , Genoma , Cariótipo , Evolução Molecular
15.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361851

RESUMO

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Hibridização in Situ Fluorescente , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , RNA Ribossômico 18S/genética
16.
Sci Rep ; 12(1): 19514, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376355

RESUMO

The subfamily Phyllostominae (Chiroptera, Phyllostomidae) comprises 10 genera of Microchiroptera bats from the Neotropics. The taxonomy of this group is controversial due to incongruities in the phylogenetic relationships evident from different datasets. The genus Lophostoma currently includes eight species whose phylogenetic relationships have not been resolved. Integrative analyzes including morphological, molecular and chromosomal data are powerful tools to investigate the phylogenetics of organisms, particularly if obtained by chromosomal painting. In the present work we performed comparative genomic mapping of three species of Lophostoma (L. brasiliense 2n = 30, L. carrikeri 2n = 26 and L. schulzi 2n = 26), by chromosome painting using whole chromosome probes from Phyllostomus hastatus and Carollia brevicauda; this included mapping interstitial telomeric sites. The karyotype of L. schulzi (LSC) is a new cytotype. The species L. brasiliense and L. carrikeri showed interstitial telomeric sequences that probably resulted from expansions of repetitive sequences near pericentromeric regions. The addition of chromosomal painting data from other species of Phyllostominae allowed phylogeny construction by maximum parsimony, and the determination that the genera of this subfamily are monophyletic, and that the genus Lophostoma is paraphyletic. Additionally, a review of the taxonomic status of LSC is suggested to determine if this species should be reclassified as part of the genus Tonatia.


Assuntos
Quirópteros , Coloração Cromossômica , Animais , Quirópteros/genética , Coloração Cromossômica/métodos , Cariótipo , Filogenia , Telômero
17.
Mol Cytogenet ; 15(1): 44, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207754

RESUMO

BACKGROUND: The history of comparative chromosome mapping is briefly reviewed, with discussion about the problem that occurs in chromosome painting when size heteromorphisms between homologues cause contamination in chromosomes sorted by flow cytometry that are used in the preparation of chromosome-specific DNA probes. MAIN BODY: As an example, we show in the alpaca (Vicagna pacos) that sequencing of contaminated chromosome sorts can reveal chromosome homologies from alignment with human and mouse genome reference sequences. The procedure identifies syntenic blocks of DNA separated in the human karyotype that are associated in the closely related alpaca and dromedary (Camelus dromedarius) karyotypes. This example provides proof of principal for the validity of the method for comparative chromosome mapping. CONCLUSION: It is suggested that the approach presented here may have application in the construction of comparative chromosome maps between distantly related taxa, such as monotremes and mammals.

18.
PLoS One ; 17(8): e0272836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947613

RESUMO

Charadriiformes represent one of the largest orders of birds; members of this order are diverse in morphology, behavior and reproduction, making them an excellent model for studying evolution. It is accepted that the avian putative ancestral karyotype, with 2n = 80, remains conserved for about 100 million years. So far, only a few species of Charadriiformes have been studied using molecular cytogenetics. Here, we performed chromosome painting on metphase chromosomes of two species of Charadriidae, Charadrius collaris and Vanellus chilensis, with whole chromosome paint probes from Burhinus oedicnemus. Charadrius collaris has a diploid number of 76, with both sex chromosomes being submetacentric. In V. chilensi a diploid number of 78 was identified, and the Z chromosome is submetacentric. Chromosome painting suggests that chromosome conservation is a characteristic common to the family Charadriidae. The results allowed a comparative analysis between the three suborders of Charadriiformes and the order Gruiformes using chromosome rearrangements to understand phylogenetic relationships between species and karyotypic evolution. However, the comparative analysis between the Charadriiformes suborders so far has not revealed any shared rearrangements, indicating that each suborder follows an independent evolutionary path, as previously proposed. Likewise, although the orders Charadriiformes and Gruiformes are placed on sister branches, they do not share any signature chromosomal rearrangements.


Assuntos
Anfípodes , Charadriiformes , Anfípodes/genética , Animais , Aves/genética , Charadriiformes/genética , Coloração Cromossômica/métodos , Evolução Molecular , Filogenia , Cromossomos Sexuais/genética
19.
Sci Rep ; 12(1): 8690, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610291

RESUMO

X-autosome translocation (XY1Y2) has been reported in distinct groups of vertebrates suggesting that the rise of a multiple sex system within a species may act as a reproductive barrier and lead to speciation. The viability of this system has been linked with repetitive sequences located between sex and autosomal portions of the translocation. Herein, we investigate Oecomys auyantepui, using chromosome banding and Fluorescence In Situ Hybridization with telomeric and Hylaeamys megacephalus whole-chromosome probes, and phylogenetic reconstruction using mtDNA and nuDNA sequences. We describe an amended karyotype for O. auyantepui (2n = 64♀65♂/FNa = 84) and report for the first time a multiple sex system (XX/XY1Y2) in Oryzomyini rodents. Molecular data recovered O. auyantepui as a monophyletic taxon with high support and cytogenetic data indicate that O. auyantepui may exist in two lineages recognized by distinct sex systems. The Neo-X exhibits repetitive sequences located between sex and autosomal portions, which would act as a boundary between these two segments. The G-banding comparisons of the Neo-X chromosomes of other Sigmodontinae taxa revealed a similar banding pattern, suggesting that the autosomal segment in the Neo-X can be shared among the Sigmodontinae lineages with a XY1Y2 sex system.


Assuntos
Coloração Cromossômica , Sigmodontinae , Animais , Hibridização in Situ Fluorescente , Filogenia , Roedores/genética , Cromossomos Sexuais/genética , Sigmodontinae/genética
20.
Front Genet ; 13: 832495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401658

RESUMO

The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis "catalão" (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1-3, 6, 7, 9, 14, 16 and 18-21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...