Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(23): 8297-8305, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267480

RESUMO

Multivalent ligand-receptor interactions between receptor-presenting lipid membranes and ligand-modified biological and biomimetic nanoparticles influence cellular entry and fusion processes. Environmental pH changes can drive these membrane-related interactions by affecting membrane nanomechanical properties. Quantitatively, however, the corresponding effects on high-curvature, sub-100 nm lipid vesicles are scarcely understood, especially in the multivalent binding context. Herein, we employed the label-free localized surface plasmon resonance (LSPR) sensing technique to track the multivalent attachment kinetics, shape deformation, and surface coverage of biotin ligand-functionalized, zwitterionic lipid vesicles with different ligand densities on a streptavidin receptor-coated supported lipid bilayer under varying pH conditions (4.5, 6, 7.5). Our results demonstrate that more extensive multivalent interactions caused greater vesicle shape deformation across the tested pH conditions, which affected vesicle surface packing as well. Notably, there were also pH-specific differences, i.e., a higher degree of vesicle shape deformation was triggered at a lower multivalent binding energy in pH 4.5 than in pH 6 and 7.5 conditions. These findings support that the nanomechanical properties of high-curvature lipid membranes, especially the membrane bending energy and the corresponding responsiveness to multivalent binding interactions, are sensitive to solution pH, and indicate that multivalency-induced vesicle shape deformation occurs slightly more readily in acidic pH conditions relevant to biological environments.


Assuntos
Bicamadas Lipídicas , Nanopartículas , Ligantes , Bicamadas Lipídicas/química , Ressonância de Plasmônio de Superfície/métodos , Concentração de Íons de Hidrogênio
2.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234560

RESUMO

Owing to high surface sensitivity, gold nanorods (AuNRs) are widely used to construct surface-based nanoplasmonic biosensing platforms for label-free molecular diagnostic applications. A key fabrication step involves controlling AuNR deposition onto the target surface, which requires maximizing surface density while minimizing inter-particle aggregation, and is often achieved by surface functionalization with a self-assembled monolayer (SAM) prior to AuNR deposition. To date, existing studies have typically used a fixed concentration of SAM-forming organic molecules (0.2-10% v/v) while understanding how SAM density affects AuNR deposition and resulting sensing performance would be advantageous. Herein, we systematically investigated how controlling the (3-aminopropyl)triethoxysilane (APTES) concentration (1-30% v/v) during SAM preparation affects the fabrication of AuNR-coated glass surfaces for nanoplasmonic biosensing applications. Using scanning electron microscopy (SEM) and UV-visible spectroscopy, we identified an intermediate APTES concentration range that yielded the highest density of individually deposited AuNRs with minimal aggregation and also the highest peak wavelength in aqueous solution. Bulk refractive index sensitivity measurements indicated that the AuNR configuration had a strong effect on the sensing performance, and the corresponding wavelength-shift responses ranged from 125 to 290 nm per refractive index unit (RIU) depending on the APTES concentration used. Biosensing experiments involving protein detection and antigen-antibody interactions further demonstrated the high surface sensitivity of the optimized AuNR platform, especially in the low protein concentration range where the measurement shift was ~8-fold higher than that obtained with previously used sensing platforms.

3.
Chem Soc Rev ; 50(17): 9741-9765, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34259262

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.


Assuntos
Antivirais/química , Materiais Revestidos Biocompatíveis , Desenho de Fármacos , COVID-19 , Humanos , Pandemias , SARS-CoV-2
4.
Int J Biol Macromol ; 182: 1906-1914, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022315

RESUMO

There is broad interest in functionalizing solid surfaces with lysozyme, which is a widely studied antimicrobial protein. To date, most efforts have focused on developing more effective immobilization schemes to promote lysozyme attachment in fully aqueous conditions, while there remains an outstanding need to understand how tuning the solution-phase conformational stability of lysozyme proteins can modulate adsorption behavior and resulting adlayer properties. Inspired by the unique conformational behavior of lysozyme proteins in water-ethanol mixtures, we conducted quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurements to systematically investigate the adsorption behavior of lysozyme proteins onto silica surfaces across a wide range of water-ethanol mixtures. Our findings revealed that lysozyme adsorption behavior strongly depended on the ethanol fraction in a non-monotonic fashion and this trend could be rationalized by taking into account how competing effects of water and ethanol solvation influence solution-phase protein size and conformational stability. Integrated analysis of the QCM-D and LSPR measurement trends enabled quantitative determination of the solvent mass within lysozyme adlayers, which tended to decrease at higher ethanol fractions and supported that the hydrodynamic properties of lysozyme adlayers are mainly influenced by the degree of protein conformational flexibility as opposed to solvation effects alone.


Assuntos
Muramidase/química , Técnicas de Microbalança de Cristal de Quartzo , Dióxido de Silício/química , Solventes/química , Ressonância de Plasmônio de Superfície , Adsorção , Animais , Galinhas , Etanol/química , Cinética , Conformação Proteica , Água/química
5.
ACS Biomater Sci Eng ; 7(1): 83-89, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33356132

RESUMO

Human hair keratins have proven to be a viable biomaterial for diverse regenerative applications. However, the most significant characteristic of this material, the ability to self-assemble into nanoscale intermediate filaments, has not been exploited. Herein, we successfully demonstrated the induction of hair-extracted keratin self-assembly in vitro to form dense, homogeneous, and continuous nanofibrous networks. These networks remain hydrolytically stable in vitro for up to 5 days in complete cell culture media and are compatible with primary human dermal fibroblasts and keratinocytes. These results enhance the versatility of human hair keratins for applications where structured assembly is of benefit.


Assuntos
Filamentos Intermediários , Queratinas Específicas do Cabelo , Fibroblastos , Cabelo , Humanos , Queratinócitos
6.
ACS Nano ; 14(9): 11950-11961, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32845615

RESUMO

Silica-coated nanoparticles are widely used in biomedical applications such as theranostics, imaging, and drug delivery. While silica-coated nanoparticles are biocompatible, experimental evidence shows that they can trigger innate immune reactions, and a broader understanding of what types of reactions are caused and how to mitigate them is needed. Herein, we investigated how the noncovalent surface functionalization of silica nanoparticles with purified proteins can inhibit nanoparticle-induced complement activation and macrophage uptake, two of the most clinically relevant innate immune reactions related to nanomedicines. Silica nanoparticles were tested alone and after coating with bovine serum albumin, human serum albumin, fibrinogen, complement factor H (FH), or immunoglobulin G (IgG) proteins. Enzyme-linked immunosorbent assays measuring the generation of various complement activation products indicated that silica nanoparticles induce complement activation via the alternative pathway. All protein coatings other than IgG protected against complement activation to varying extents. Most proteins acted as steric blockers to inhibit complement protein deposition on the nanoparticle surface, while FH coatings were biologically active and inhibited a key step in the amplification loop of complement activation, as confirmed by Western blot analysis. Flow cytometry and fluorescence microscopy experiments further revealed that complement activation-inhibiting protein coatings blunted macrophage uptake as well. Taken together, our findings demonstrate a simple and effective way to coat silica nanoparticles with purified protein coatings in order to mitigate innate immune reactions. Such methods are readily scalable and might constitute a useful strategy for improving the immunological safety profile of silica and silica-coated nanoparticles as well as other types of inorganic nanoparticles.


Assuntos
Nanopartículas , Dióxido de Silício , Ativação do Complemento , Proteínas do Sistema Complemento , Humanos
7.
Langmuir ; 36(35): 10606-10614, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787011

RESUMO

Natural proteins such as bovine serum albumin (BSA) are readily extracted from biological fluids and widely used in various applications such as drug delivery and surface coatings. It is standard practice to dope BSA proteins with an amphipathic stabilizer, most commonly fatty acids, during purification steps to maintain BSA conformational properties. There have been extensive studies investigating how fatty acids and related amphiphiles affect solution-phase BSA conformational properties, while it is far less understood how amphipathic stabilizers might influence noncovalent BSA adsorption onto solid supports, which is practically relevant to form surface coatings. Herein, we systematically investigated the binding interactions between BSA proteins and different molar ratios of caprylic acid (CA), monocaprylin (MC), and methyl caprylate (ME) amphiphiles-all of which have 8-carbon-long, saturated hydrocarbon chains with distinct headgroups-and resulting effects on BSA adsorption behavior on silica surfaces. Our findings revealed that anionic CA had the greatest binding affinity to BSA, which translated into greater solution-phase conformational stability and reduced adsorption-related conformational changes along with relatively low packing densities in fabricated BSA adlayers. On the other hand, nonionic MC had moderate binding affinity to BSA and could stabilize BSA conformational properties in the solution and adsorbed states while also enabling BSA adlayers to form with higher packing densities. We discuss physicochemical factors that contribute to these performance differences, and our findings demonstrate how rational selection of amphiphile type and amount can enable control over BSA adlayer properties, which could lead to improved BSA protein-based surface coatings.


Assuntos
Soroalbumina Bovina , Dióxido de Silício , Adsorção , Conformação Proteica , Propriedades de Superfície
8.
Colloids Surf B Biointerfaces ; 194: 111194, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585535

RESUMO

Serum albumins are evolutionary conserved proteins that are found in many animal species, and purified forms are widely used in biotechnology applications, such as components within surface passivation coatings and drug delivery systems. As such, there has long been interest in studying how serum albumins adsorb onto solid supports, although existing studies are limited to one or two species. Herein, we comprehensively investigated three serum albumins of bovine (BSA), human (HSA), and rat (RSA) origin, and discovered striking differences in their conformational stabilities and adsorption properties. Together with bioinformatics analysis, dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy measurements revealed that the proteins form different types of macromolecular assemblies in solution. BSA and HSA existed as individual monomers while RSA formed multimers, and each protein exhibited sequence-dependent variations in conformational stability as well. Quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) experiments further showed that BSA and HSA proteins adsorb to form well-packed adlayers, and the extent of protein uptake and spreading depended on their unique conformational stabilities. Conversely, RSA adsorption resulted in sparse adlayers and appreciably less spreading of the adsorbed multimers, as confirmed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy experiments. Together, our findings demonstrate that significant differences in conformational stability and adsorption behavior exist even between evolutionary conserved serum albumins with high sequence and structural similarity and illustrate how rational engineering of protein structures and stabilities, guided by insights from nature, might be useful to design protein-based coatings for various biointerfacial science applications.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Albumina Sérica , Adsorção , Animais , Bovinos , Humanos , Ratos , Soroalbumina Bovina , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
9.
Nano Lett ; 20(3): 1747-1754, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32027140

RESUMO

Plasmonic nanostructures have a wide range of applications, including chemical and biological sensing. However, the development of techniques to fabricate submicrometer-sized plasmonic structures over large scales remains challenging. We demonstrate a high-throughput, cost-effective approach to fabricate Au nanoribbons via chemical lift-off lithography (CLL). Commercial HD-DVDs were used as large-area templates for CLL. Transparent glass slides were coated with Au/Ti films and functionalized with self-assembled alkanethiolate monolayers. Monolayers were patterned with lines via CLL. The lifted-off, exposed regions of underlying Au were selectively etched into large-area grating-like patterns (200 nm line width; 400 nm pitch; 60 nm height). After removal of the remaining monolayers, a thin In2O3 layer was deposited and the resulting gratings were used as plasmonic sensors. Distinct features in the extinction spectra varied in their responses to refractive index changes in the solution environment with a maximum bulk sensitivity of ∼510 nm/refractive index unit. Sensitivity to local refractive index changes in the near-field was also achieved, as evidenced by real-time tracking of lipid vesicle or protein adsorption. These findings show how CLL provides a simple and economical means to pattern large-area plasmonic nanostructures for applications in optoelectronics and sensing.


Assuntos
Ouro/química , Índio/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Ressonância de Plasmônio de Superfície
10.
Nanoscale Adv ; 2(8): 3103-3114, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134263

RESUMO

Understanding biointerfacial processes is crucial in various fields across fundamental and applied biology, but performing quantitative studies via conventional characterization techniques remains challenging due to instrumentation as well as analytical complexities and limitations. In order to accelerate translational research and address current challenges in healthcare and medicine, there is an outstanding need to develop surface-sensitive technologies with advanced measurement capabilities. Along this line, nanoplasmonic sensing has emerged as a powerful tool to quantitatively study biointerfacial processes owing to its high spatial resolution at the nanoscale. Consequently, the development of robust biological interfacing strategies becomes imperative to maximize its characterization potential. This review will highlight and discuss the critical role of biological interfacing within the context of constructing nanoplasmonic sensing platforms for biointerfacial science applications. Apart from paving the way for the development of highly surface-sensitive characterization tools that will spur fundamental biological interaction studies and improve the overall understanding of biological processes, the basic principles behind biointerfacing strategies presented in this review are also applicable to other fields that involve an interface between an inorganic material and a biological system.

11.
Phys Chem Chem Phys ; 21(30): 16686-16693, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31317978

RESUMO

Understanding the properties of cell membranes is important in the fields of fundamental and applied biology. While the characterization of simplified biological membrane mimics comprising liquid phase lipids has been routinely performed due to the ease of fabrication, the characterization of more realistic membrane mimics comprising multi-phase lipids remains challenging due to more complicated fabrication requirements. Herein, we report a convenient approach to fabricate and characterize multi-phase supported lipid bilayers (SLBs). We employed the solvent-assisted lipid bilayer (SALB) formation method to fabricate mixed lipid bilayers comprising liquid phase 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and gel phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipids at room temperature. The fabrication procedure was performed inside a newly designed microfluidic chamber, which facilitated the subsequent characterization of the SLBs without exposure to air. The SLBs were then characterized via fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), atomic force microscopy (AFM) and AFM-based force-distance measurements. Interestingly, results from these characterization techniques revealed that regardless of the gel phase composition, the SALB formation method consistently yielded uniform SLBs at room temperature, even though the transition temperature of DPPC is considerably higher. Furthermore, the composition ratio of DOPC and DPPC in the precursor solution is well reproduced in the fabricated SLBs. We also identified from diffusivity measurements that a high ratio of gel phase lipid revitalizes lipid-lipid interactions, which led to reduced molecular fluidity and the suppression of thermal undulation within the SLBs. Taken together, our results highlight the robustness of the SALB formation method that allows the fabrication of complex lipid bilayers with a high degree of precision, which is suitable for functional studies of biological membranes.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Difusão
12.
Nat Protoc ; 14(7): 2091-2118, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175346

RESUMO

The supported lipid bilayer (SLB) platform is a popular cell membrane mimic that is utilized in the chemical, biological, materials science, and medical fields. To date, SLB preparation has proven challenging because of the need for specialized fabrication equipment, domain-specific knowledge about topics relevant to lipid self-assembly, and extensive training in the interfacial science field. Existing methods, such as vesicle fusion, also work with only a narrow range of lipid compositions and material supports. Here, we describe a recently developed simple and versatile protocol to form SLBs. The protocol is simple because it requires minimal sample preparation and only basic microfluidics, making it technically accessible to researchers across different scientific disciplines. The protocol is versatile because it works on a wide range of material supports, such as silicon oxide, gold, and graphene, and is compatible with diverse lipid compositions, including sterols and signaling lipids. The main stages of the procedure involve dissolving a lipid sample in an organic solvent, depositing the lipid solution on a solid support, and replacing the organic solvent with aqueous buffer. In addition, we provide procedures for characterizing the quality of the prepared SLBs and present examples of biofunctionalization procedures. The protocol takes 1-2 h and is broadly useful in various application contexts, including clinical diagnostics, biosensing, and cellular interfaces.


Assuntos
Bioquímica/métodos , Bicamadas Lipídicas/química , Solventes/química , Bioquímica/instrumentação , Dispositivos Lab-On-A-Chip , Fosfolipídeos/química
13.
Colloids Surf B Biointerfaces ; 180: 306-312, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071570

RESUMO

Human serum albumin (HSA) is one of the most abundant proteins in the human body and also used as a biomaterial coating. While there is significant interest in modifying the properties of solid supports to control HSA adsorption, there is an outstanding need to investigate whether modulating the conformational properties of HSA proteins can influence adsorption properties, especially in the context of surface passivation applications. Herein, we investigated how ionic strength - a key modulator of electrostatic forces influencing protein folding and protein-substrate interactions - can affect the conformational stability of HSA proteins and the resulting adsorption of HSA proteins onto silica surfaces for surface passivation applications. Thermal denaturation experiments identified that HSA is prone to unfolding and aggregation under physiologically relevant ionic strength conditions while HSA is more conformationally stable in low salt conditions. In line with these observations, we also determined that the adsorption of native HSA monomers onto silica surfaces was strongly influenced by electrostatic forces, with greater uptake in low ionic strength conditions. By contrast, the adsorption uptake of heat-denatured HSA was greatest in high ionic strength conditions and related to oligomer size. It was further revealed that native HSA is superior to heat-denatured HSA for passivating silica surfaces against serum biofouling. Taken together, our findings demonstrate that modulating the conformational stability of HSA proteins influences the adsorption pathway and passivation properties, offering fundamental insights that can lead to improved protein coatings.


Assuntos
Albumina Sérica Humana/química , Adsorção , Temperatura Alta , Humanos , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Técnicas de Microbalança de Cristal de Quartzo , Sais/farmacologia , Propriedades de Superfície , Temperatura
14.
Anal Chem ; 90(21): 12503-12511, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30272950

RESUMO

Unraveling the details of how supported lipid bilayers (SLBs) are coupled to oxide surfaces is experimentally challenging, and there is an outstanding need to develop highly surface-sensitive measurement strategies to determine SLB separation distances. Indeed, subtle variations in separation distance can be associated with significant differences in bilayer-substrate interaction energy. Herein, we report a nanoplasmonic ruler strategy to measure the absolute separation distance between SLBs and oxide surfaces. A localized surface plasmon resonance (LSPR) sensor was employed to track SLB formation onto titania- and silica-coated gold nanodisk arrays. To interpret measurement data, an analytical model relating the LSPR measurement response to bilayer-substrate separation distance was developed based on finite-difference time-domain (FDTD) simulations and theoretical calculations. The results indicate that there is a larger separation distance between SLBs and titania surfaces than silica surfaces, and the trend was consistent across three tested lipid compositions. We discuss these findings within the context of the interfacial forces underpinning bilayer-substrate interactions, and the nanoplasmonic ruler strategy provides the first direct experimental evidence comparing SLB separation distances on titania and silica surfaces.

15.
Nat Mater ; 17(11): 971-977, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349030

RESUMO

Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.


Assuntos
Antivirais/uso terapêutico , Encéfalo/metabolismo , Peptídeos/uso terapêutico , Infecção por Zika virus/tratamento farmacológico , Animais , Antivirais/farmacocinética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética
16.
ACS Appl Mater Interfaces ; 10(38): 32047-32057, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30178663

RESUMO

Bovine serum albumin (BSA) is the most widely used protein for surface passivation applications, although it has relatively weak, nonsticky interactions with hydrophilic surfaces such as silica-based materials. Herein, we report a simple and versatile method to increase the stickiness of BSA protein molecules adsorbing onto silica surfaces, resulting in up to a 10-fold improvement in blocking efficiency against serum biofouling. Circular dichroism spectroscopy, dynamic light scattering, and nanoparticle tracking analysis showed that temperature-induced denaturation of BSA proteins in bulk solution resulted in irreversible unfolding and protein oligomerization, thereby converting weakly adhesive protein monomers into a more adhesive oligomeric form. The heat-treated, denatured BSA oligomers remained stable after cooling. Room-temperature quartz crystal microbalance-dissipation and localized surface plasmon resonance experiments revealed that denatured BSA oligomers adsorbed more quickly and in larger mass quantities onto silica surfaces than native BSA monomers. We also determined that the larger surface contact area of denatured BSA oligomers is an important factor contributing to their more adhesive character. Importantly, denatured BSA oligomers were a superior passivating agent to inhibit biofouling on silica surfaces and also improved Western blot application performance. Taken together, the findings demonstrate how temperature-induced denaturation of BSA protein molecules can lead to improved protein-based coatings for surface passivation applications.


Assuntos
Biotecnologia/métodos , Desnaturação Proteica , Soroalbumina Bovina/metabolismo , Temperatura , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
17.
Anal Chem ; 90(12): 7458-7466, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29806449

RESUMO

Nanoplasmonic sensors have emerged as a promising measurement approach to track biomacromolecular interactions involving lipid membrane interfaces. By taking advantage of nanoscale fabrication capabilities, it is possible to design sensing platforms with various architectural configurations. Such capabilities open the door to fabricating lipid membrane-coated nanoplasmonic sensors with varying degrees of membrane curvature in order to understand how biomacromolecular interaction processes are influenced by membrane curvature. Herein, we employed an indirect nanoplasmonic sensing approach to characterize the fabrication of supported lipid bilayers (SLBs) on silica-coated nanowell and nanodisk sensing platforms and to investigate how membrane curvature influences membrane-peptide interactions by evaluating the corresponding measurement responses from different spectral signatures that are sensitive to specific regions of the sensor geometries. SLBs were prepared by the vesicle fusion method, as monitored in real-time by nanoplasmonic sensing measurements and further characterized by fluorescence recovery after photobleaching (FRAP) experiments. By resolving different spectral signatures in the nanoplasmonic sensing measurements, it was determined that peptide binding induces membrane disruption at positively curved membrane regions, while peptide binding without subsequent disruption was observed at planar and negatively curved regions. These findings are consistent with the peptide's known preference to selectively form pores in positively curved membranes, providing validation to the nanoplasmonic sensing approach and highlighting how the integration of nanoplasmonic sensors with different nanoscale architectures can be utilized to study the influence of membrane curvature on biomacromolecular interaction processes.


Assuntos
Estruturas da Membrana Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Membrana Celular/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/metabolismo , Nanotecnologia/métodos , Peptídeos/metabolismo , Propriedades de Superfície
18.
Sensors (Basel) ; 18(4)2018 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-29690554

RESUMO

Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.


Assuntos
Proteínas/análise , Adsorção , Ouro , Nanotecnologia , Técnicas de Microbalança de Cristal de Quartzo , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
19.
Adv Drug Deliv Rev ; 125: 48-77, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247763

RESUMO

The detection of cancer biomarkers represents an important aspect of cancer diagnosis and prognosis. Recently, the concept of liquid biopsy has been introduced whereby diagnosis and prognosis are performed by means of analyzing biological fluids obtained from patients to detect and quantify circulating cancer biomarkers. Unlike conventional biopsy whereby primary tumor cells are analyzed, liquid biopsy enables the detection of a wide variety of circulating cancer biomarkers, including microRNA (miRNA), circulating tumor DNA (ctDNA), proteins, exosomes and circulating tumor cells (CTCs). Among the various techniques that have been developed to detect circulating cancer biomarkers, nanoplasmonic sensors represent a promising measurement approach due to high sensitivity and specificity as well as ease of instrumentation and operation. In this review, we discuss the relevance and applicability of three different categories of nanoplasmonic sensing techniques, namely surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS), for the detection of different classes of circulating cancer biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Nanotecnologia , Neoplasias/sangue , Células Neoplásicas Circulantes/patologia , Ressonância de Plasmônio de Superfície , Humanos , Nanoestruturas/química , Neoplasias/diagnóstico
20.
Anal Chem ; 89(23): 12976-12983, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111680

RESUMO

The development of highly surface-sensitive measurement approaches to monitor protein adsorption across different temperatures would advance understanding of how thermally activated processes contribute to the denaturation of adsorbed proteins. Herein, we established an indirect nanoplasmonic sensing approach to monitor the temperature-dependent adsorption and denaturation of bovine serum albumin (BSA) protein onto a silica-coated array of plasmonic gold nanodisks. A theoretical model was developed to explain how the denaturation of an individual, adsorbed protein molecule influences the localized surface plasmon resonance (LSPR) measurement response and provided an analytical framework to estimate the effect of temperature-dependent protein denaturation on the corresponding adsorption kinetics. The sensing performance of this measurement platform was also characterized across the tested range of temperatures. With increasing temperature (up to 50 °C), it was observed that adsorbed proteins undergo greater denaturation. Circular dichroism spectroscopy and dynamic light scattering experiments verified that individual BSA monomers in bulk solution had increasingly lower conformational stability at higher temperatures within this range, which correlated with the extent of denaturation in the adsorbed state. At higher temperatures, distinct kinetic profiles arising from multilayer/aggregate formation on the sensor surface were also detected. Taken together, our findings identify that the high surface sensitivity and temperature stability of LSPR sensors make them broadly useful analytical tools for monitoring thermally activated biomacromolecular interaction processes.


Assuntos
Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Ouro/química , Nanopartículas Metálicas/química , Desnaturação Proteica , Ressonância de Plasmônio de Superfície/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...