Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446383

RESUMO

Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid ß-glucosidase gene (GBA1), leading to a deficiency in the ß-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features in GD patients. Although both defective bone formation and increased bone resorption due to osteoblast and osteoclast dysfunction contribute to GD bone pathology, the molecular bases are not fully understood, and bone disease is not completely resolved with currently available specific therapies. For this reason, using editing technology, our group has developed a reliable, isogenic, and easy-to-handle cellular model of GD monocytes (GBAKO-THP1) to facilitate GD pathophysiology studies and high-throughput drug screenings. In this work, we further characterized the model showing an increase in proinflammatory cytokines (Interleukin-1ß and Tumor Necrosis Factor-α) release and activation of osteoclastogenesis. Furthermore, our data suggest that GD monocytes would display an increased osteoclastogenic potential, independent of their interaction with the GD microenvironment or other GD cells. Both proinflammatory cytokine production and osteoclastogenesis were restored at least, in part, by treating cells with the recombinant human GCase, a substrate synthase inhibitor, a pharmacological chaperone, and an anti-inflammatory compound. Besides confirming that this model would be suitable to perform high-throughput screening of therapeutic molecules that act via different mechanisms and on different phenotypic features, our data provided insights into the pathogenic cascade, leading to osteoclastogenesis exacerbation and its contribution to bone pathology in GD.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/patologia , Osteogênese , Monócitos/patologia , Sistemas CRISPR-Cas , Diferenciação Celular
2.
Mol Genet Metab Rep ; 25: 100678, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294373

RESUMO

Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid ß-glucosidase encoding gene (GBA1), resulting in the deficient activity of acid ß-glucosidase (GCase). To date, there is no approved treatment for the neurological manifestations of the disease. The role of Ambroxol as a chaperone for mutant GCase has been extensively demonstrated in vitro. Furthermore, different authors have reported beneficial effects of high doses of Ambroxol on neurological manifestations in patients affected by GD. In this report, we describe the in vitro and in vivo effects of Ambroxol in two patients (P1 and P2) affected by the neurological form of GD and epilepsy, carrying mutations already reported as responsive to the chaperone. Indeed, P1 presented the N188S mutation in compound heterozygous with a null allele (IVS2 + 1G > A) and P2 was homozygous for the L444P mutation. As expected, a beneficial effect of Ambroxol was observed in cultured fibroblasts as well as in vivo, both on epilepsy and on biomarkers of GD, in P1. However, Ambroxol was completely undefective in P2, suggesting that other factors besides the GBA1 mutation itself would be involved in the response therapy which would be difficult to predict based on the patient genotype. The present report expands the experience of Ambroxol treatment in neurological GD patients and highlights the need to in vitro test the individual response to Ambroxol even in patients carrying mutations already classified as responsive to the chaperone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...