Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 328, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322410

RESUMO

BACKGROUND: Septoria tritici blotch (STB) remains a significant obstacle to durum wheat cultivation on a global scale. This disease remains a challenge for farmers, researchers, and breeders, who are collectively dedicated to reduce its damage and improve wheat resistance. Tunisian durum wheat landraces have been recognized as valuable genetic ressources that exhibit resistance to biotic and abiotic stresses and therefore play a crucial role in breeding program aimed at creating new wheat varieties resistant to fungal diseases as STB, as well as adapted to climate change constraints. RESULTS: A total of 366 local durum wheat accessions were assessed for resistance to two virulent Tunisian isolates of Zymoseptoria tritici Tun06 and TM220 under field conditions. Population structure analysis of the durum wheat accessions, performed with 286 polymorphic SNPs (PIC > 0.3) covering the entire genome, identified three genetic subpopulations (GS1, GS2 and GS3) with 22% of admixed genotypes. Interestingly, all of the resistant genotypes were among GS2 or admixed with GS2. CONCLUSIONS: This study revealed the population structure and the genetic distribution of the resistance to Z. tritici in the Tunisian durum wheat landraces. Accessions grouping pattern reflected the geographical origins of the landraces. We suggested that GS2 accessions were mostly derived from eastern Mediterranean populations, unlike GS1 and GS3 that originated from the west. Resistant GS2 accessions belonged to landraces Taganrog, Sbei glabre, Richi, Mekki, Badri, Jneh Khotifa and Azizi. Furthermore, we suggested that admixture contributed to transmit STB resistance from GS2 resistant landraces to initially susceptible landraces such as Mahmoudi (GS1), but also resulted in the loss of resistance in the case of GS2 susceptible Azizi and Jneh Khotifa accessions.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Melhoramento Vegetal , Genética Populacional , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
2.
BMC Genomics ; 23(1): 372, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581550

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. RESULTS: In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession 'Agili39'. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6%), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42%) and has been effective at the field trials against two Z. tritici isolates. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5 Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16% and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. CONCLUSION: This study demonstrates that Z. tritici resistance in the 'Agili39' landrace accession is controlled by two minor and two major QTL acting in an additive mode. We also provide evidence that the broad efficacy of the resistance to STB in 'Agili 39' is due to a natural pyramiding of these QTL. A sustainable use of this Z. tritici resistance source and a positive selection of the linked markers to the identified QTL will greatly support effective breeding for Z. tritici resistance in durum wheat.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Plântula/genética , Triticum/genética
3.
BMC Genom Data ; 22(1): 3, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33568058

RESUMO

BACKGROUND: Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. RESULTS: Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. CONCLUSION: Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.


Assuntos
Variação Genética , Triticum/genética , Repetições de Microssatélites/genética , Fenótipo , Triticum/classificação , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...