Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400291, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646967

RESUMO

During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.

2.
Carbohydr Polym ; 311: 120743, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028872

RESUMO

This study aimed at the production of marine bacterial exopolysaccharides (EPS) as biodegradable and nontoxic biopolymers, competing the synthetic derivatives, with detailed structural and conformational analyses using spectroscopy techniques. Twelve marine bacterial bacilli were isolated from the seawater of Mediterranean Sea, Egypt, then screened for EPS production. The most potent isolate was identified genetically as Bacillus paralicheniformis ND2 by16S rRNA gene sequence of ~99 % similarity. Plackett-Burman (PB) design identified the optimization conditions of EPS production, which yielded the maximum EPS (14.57 g L-1) with 1.26-fold increase when compared to the basal conditions. Two purified EPSs namely NRF1 and NRF2 with average molecular weights (Mw¯) of 15.98 and 9.70 kDa, respectively, were obtained and subjected for subsequent analyses. FTIR and UV-Vis reflected their purity and high carbohydrate contents while EDX emphasized their neutral type. NMR identified the EPSs as levan-type fructan composed of ß-(2-6)-glycosidic linkage as a main backbone, and HPLC explained that the EPSs composed of fructose. Circular dichroism (CD) suggested that NRF1 and NRF2 had identical structuration with a little variation from the EPS-NR. The EPS-NR showed antibacterial activity with the maximum inhibition against S. aureus ATCC 25923. Furthermore, all the EPSs revealed a proinflammatory action through dose-dependent increment of expression of proinflammatory cytokine mRNAs, IL-6, IL-1ß and TNFα.


Assuntos
Fator 2 Relacionado a NF-E2 , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Staphylococcus aureus/metabolismo , Frutanos/farmacologia , Bactérias/metabolismo , Análise Espectral
3.
Nanomaterials (Basel) ; 12(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683761

RESUMO

The effect of silica nanoparticles (NP-SiO2) in xanthan gum (XG) solutions was investigated through the analysis of viscosity profiles. First, hydrocolloid XG solutions and hydrophilic NP-SiO2 suspensions were characterized individually through rheological measurements, with and without salt (NaCl). Then, nanofluids composed of XG and NP-SiO2 dispersed in water and brine were studied through two different aging tests. The addition of nanoparticles was shown to produce a slight effect on the viscosity of the fresh fluids (initial time), while a more remarkable effect was observed over time. In particular, it appears that the presence of NP-SiO2 stabilizes the polymer solution by maintaining its viscosity level in time, due to a delay in the movement of the molecule. Finally, characterization techniques such as confocal microscopy, capillary rheometry, and Zeta potential were implemented to analyze the XG/NP-SiO2 interaction. Intrinsic viscosity and relative viscosity were calculated to understand the molecular interactions. The presence of NP-SiO2 increases the hydrodynamic radius of the polymer, indicating attractive forces between these two components. Furthermore, dispersion of the nanoparticles in the polymeric solutions leads to aggregates of an average size smaller than 300 nm with a good colloidal stability due to the electrostatic attraction between XG and NP-SIO2. This study proves the existence of interactions between XG and NP-SiO2 in solution.

4.
Front Mol Biosci ; 9: 865833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480890

RESUMO

Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.

5.
Soft Matter ; 18(17): 3318-3322, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441641

RESUMO

Health concerns associated with the advent of nanotechnologies have risen sharply when it was found that particles of nanoscopic dimensions reach the cell lumina. Plasma and organelle lipid membranes, which are exposed to both the incoming and the engulfed nanoparticles, are the primary targets of possible disruptions. However, reported adhesion, invagination and embedment of nanoparticles (NPs) do not compromise the membrane integrity, precluding direct bilayer damage as a mechanism for toxicity. Here it is shown that a lipid membrane can be torn by small enough nanoparticles, thus unveiling mechanisms for how lipid membrane can be compromised by tearing from nanoparticles. Surprisingly, visualization by cryo transmission electron microscopy (cryo-TEM) of liposomes exposed to nanoparticles revealed also that liposomal laceration is prevented by particle abundance. Membrane destruction results thus from a subtle particle-membrane interplay that is here elucidated. This brings into a firmer molecular basis the theorized mechanisms of nanoparticle effects on lipid bilayers and paves the way for a better assessment of nanoparticle toxicity.


Assuntos
Lacerações , Nanopartículas , Humanos , Bicamadas Lipídicas , Lipossomos , Microscopia Eletrônica de Transmissão
6.
Polymers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883567

RESUMO

Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.

7.
Biomacromolecules ; 22(7): 3128-3137, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137600

RESUMO

Polymersomes are multicompartmental vesicular nano-objects obtained by self-assembly of amphiphilic copolymers. When prepared in the aqueous phase, they are composed of a hydrophobic bilayer enclosing water. Although such fascinating polymeric nano-objects have been widely reported with synthetic block copolymers, their formation from polysaccharide-based copolymers remains a significant challenge. In the present study, the powerful platform technology known as polymerization-induced self-assembly was used to prepare in situ pure vesicles from a polysaccharide-grafted copolymer: dextran-g-poly(2-hydroxypropyl methacrylate) (Dex-g-PHPMA). The growth of the PHPMA grafts was performed with a dextran-based macromolecular chain transfer agent in water at 20 °C using photomediated reversible addition fragmentation chain transfer polymerization at 405 nm. Transmission electron microscopy, cryogenic electron microscopy, small-angle X-ray scattering, atomic force microscopy, and dynamic light scattering revealed that amphiphilic Dex-g-PHPMAX = 100-300 (X is the targeted average degree of polymerization, Xn̅, of each graft at full conversion) exhibit remarkable self-assembly behavior. On the one hand, vesicles were obtained over a wide range of solid concentrations (from 2.5% to 13.5% w/w), which can facilitate posterior targeting of such rare morphology. On the other hand, the extension of Xn̅ induces an increase in the vesicle membrane thickness, rather than a morphological evolution (spherical micelles to cylinders to vesicles).


Assuntos
Micelas , Polímeros , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polissacarídeos
8.
Eur J Pharmacol ; 896: 173930, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545157

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Nanomedicina/métodos , SARS-CoV-2/efeitos dos fármacos , Vacinas Virais/farmacologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Desenvolvimento de Medicamentos , Humanos
9.
ACS Appl Bio Mater ; 4(3): 2742-2751, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014313

RESUMO

In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(o-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO4/ascorbic acid). It was then proved that the neutralization of DOX optimized drug loading. DOX loading and release were independent of the coverage mechanism if the catalyst used to covalently link the shell to the core was correctly chosen. Second, the kinetics of DOX release were investigated by simple diffusion or light irradiation of the NPs. Experiments showed that less than 20% of DOX was released by simple diffusion after 48 h in PBS or DMEM media when 45% of DOX released after only 30 s of light irradiation of the NPs. Finally, the impact of the phototriggered DOX release on cell viability was investigated on various cell lines [Caco-2, HepG2, HCT-116, and HT-29 cells as well as murine macrophages (RAW 264.7)]. Cellular mortality was evaluated to be dependent on the cell lines tested. Our approach provided an improved DOX release toward the human liver cancer cell line, and a high internalization of the PNBA-based NPs into HepG2 cells was observed using fluorescence microscopy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Dextranos/farmacologia , Doxorrubicina/farmacologia , Nitrobenzenos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Teste de Materiais , Camundongos , Nanopartículas/química , Nitrobenzenos/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Polímeros/química , Células RAW 264.7
10.
Polymers (Basel) ; 12(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560277

RESUMO

Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of γ-Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and γ-Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.

11.
Macromol Rapid Commun ; 41(9): e2000058, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32187400

RESUMO

Currently, the phase transition of aqueous binary systems containing thermoresponsive (co)polymers, and exhibiting upper critical solution temperature (UCST), is exclusively investigated in dilute solutions, which can limit the knowledge of their UCST-type phase transition. Herein, a photo-RAFT polymerization approach, using acrylamide (AAm) and acrylonitrile (AN) as monomer models, is used to prepare well-controlled poly(AAm-co-AN) copolymers "in situ" in highly concentrated dispersions (60 wt%). The impact of the copolymer concentration and the chemical composition (as a variation of AN fraction in the copolymers) on the cloud point temperature (TCP ) are investigated using turbidity measurements. Importantly, the results show that upon increasing the polymer concentration, a sharp increase of TCP up to a maximum point is observed, representing the UCST, before the decrease of TCP at higher polymer concentrations. Finally, a model equation is developed to fit the UCST values of poly(AAm-co-AN), which can be useful to design new poly(AAm-co-AN) copolymers with a desired UCST for a specific application.


Assuntos
Polímeros/síntese química , Temperatura , Estrutura Molecular , Transição de Fase , Processos Fotoquímicos , Polimerização , Polímeros/química , Água/química
12.
Cells ; 9(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877663

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is expressed on some tumor cells, such as myeloma, Hodgkin lymphoma, colon cancer and ovarian cancer, as well as immunosuppressive cells. There is increasingly evidence that TNFR2 expression in cancer microenvironment has significant implications in cancer progression, metastasis and immune evasion. Although nanomedicine has been extensively studied as a carrier of cancer immunotherapeutic agents, no study to date has investigated TNFR2-targeting nanomedicine in cancer treatment. From an epigenetic perspective, previous studies indicate that DNA demethylation might be responsible for high expressions of TNFR2 in cancer models. This perspective review discusses a novel therapeutic strategy based on nanomedicine that has the capacity to target TNFR2 along with inhibition of DNA demethylation. This approach may maximize the anti-cancer potential of nanomedicine-based immunotherapy and, consequently, markedly improve the outcomes of the management of patients with malignancy.


Assuntos
Antineoplásicos/uso terapêutico , Desmetilação do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Humanos , Nanomedicina , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral
13.
Colloids Surf B Biointerfaces ; 182: 110393, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357128

RESUMO

In this work, photo-sensitive core/shell nanoparticles (NPs) based on biocompatible dextran-g-poly(o-nitrobenzyl acrylate) copolymers (Dex-g-PNBA), containing dextran as hydrophilic backbone and PNBA as photosensitive grafts, were formulated using two processes. In the first process (nanoprecipitation), NPs were prepared using preformed Dex-g-PNBA copolymers. Using the second process (emulsion/organic solvent evaporation), "clicked" or "unclicked" NPs were obtained carrying out (or not) an interfacial in situ click chemistry, respectively. Two model molecules, Nile Red (NR) and Doxorubicin (DOX), were encapsulated and their controlled release from NPs was investigated under UV irradiations to demonstrate the high potential of such photosensitive NPs in biomedicine applications as drug delivery nanocarriers. According to such irradiations, improved release was easily observed. Release kinetics depended on the formulation process and the NPs core chemistry, but not on the occurrence of the interfacial in situ click chemistry. More interesting, a stepped release of such model molecules may easily be obtained.


Assuntos
Acrilatos/química , Preparações de Ação Retardada/farmacologia , Dextranos/química , Doxorrubicina/farmacologia , Nanopartículas/química , Polímeros/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Química Click , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/efeitos da radiação , Raios Ultravioleta
14.
J Mater Chem B ; 6(31): 5130-5143, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254540

RESUMO

Mesenchymal stem cells (MSCs) have gained increasing interest for tissue engineering and cellular therapy. MSC expansion on microcarriers (MCs) in stirred bioreactors has emerged as an attractive method for their scaled up production. Some MCs have been developed based on polyesters as a hydrophobic biodegradable core. However, most of these MCs are formulated by an emulsion/organic solvent evaporation (E/E) process using poly(vinyl alcohol) as a shell steric stabilizer, which is biocompatible but not degradable in vivo. Moreover, in most of these MCs, the polymer shell is only physically adsorbed at the particle surface. To the best of our knowledge, no study deals with the stability of such a shell when the MCs are in contact with competitive surfactants or with proteins contained in the culture medium. In this study, fully in vivo bioresorbable dextran-covered polylactide-based MCs were formulated using an E/E process, which allowed to control their surface chemistry. Different dextran derivatives with alkyne or ammonium groups were firstly synthesised. Then, on the one hand, some MCs (non-clicked MCs) were formulated with a physically adsorbed polysaccharide shell onto the core. On the other hand, the polysaccharide shell was linked to the core via in situ CuAAC click-chemistry carried out during the E/E process (clicked MCs). The stability of such coverage was first studied in the presence of competitive surfactants (sodium dodecyl sulfate-SDS, or proteins contained in the culture medium) using nanoparticles (NPs) exhibiting the same chemical composition (core/shell) as MCs. The results revealed the total desorption of the dextran shell for non-clicked NPs after treatment with SDS or the culture medium, while this shell desorption was greatly decreased for clicked NPs. A qualitative study of this shell stability was finally carried out on MCs formulated using a new fluorescent dextran-based surfactant. The results were in agreement with those observed for NPs, and showed that non-clicked MCs are characterized by poor shell stability in contact with a competitive surfactant, which could be quite an issue during MSC expansion. In contrast, clicked MCs possess better shell stability, which allow a better control of the MC surface chemistry, especially during cell culture.

15.
Soft Matter ; 13(3): 627-637, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27991638

RESUMO

Phase separation in giant polymer/lipid hybrid unilamellar vesicles (GHUVs) has been described over the last few years. However there is still a lack of understanding on the physical and molecular factors governing the phase separation in such systems. Among these parameters it has been suggested that in analogy to multicomponent lipid vesicles hydrophobic mismatches as well as lipid fluidity play a role. In this work, we aim to map a global picture of phase separation and domain formation in the membrane of GHUVs by using various copolymers based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEO) with different architectures (grafted, triblock) and molar masses, combined with phospholipids in the fluid (POPC) or gel state (DPPC) at room temperature. From confocal imaging and fluorescence lifetime imaging microscopy (FLIM) techniques, the phase separation into either micro- or nano-domains within GHUVs was studied. In particular, our systematic studies demonstrate that in addition to the lipid/polymer fraction or the lipid physical state, important factors such as line tension at lipid polymer/lipid boundaries can be finely modulated by the molar mass and the architecture of the copolymer and lead to the formation of stable lipid domains with different sizes and morphologies in such GHUVs.

16.
J Colloid Interface Sci ; 476: 222-229, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27232538

RESUMO

Cadmium-based quantum dots (QDs) were easily, quickly and efficiently transferred from an organic medium to water without modification of their surface chemistry by the simple emulsion/solvent evaporation technique using micelles of amphiphilic diblock copolymers based on poly(ethylene oxide) and poly(2-methacryloyloxyethyl acrylate) (PEO-b-PMEA) as hosts. The resulting hybrid micelles were stabilized very rapidly by photo-cross-linking the hydrophobic core around the QDs. The encapsulation and photo-cross-linking process were shown to barely affect the photoluminescence properties. Grafting a short octyl chain at the end of the hydrophobic block enhanced both the colloidal stability of the QDs dispersed in water and prevented the quenching of their fluorescence by copper ions. Grafting a longer hexadecyl chain at the end of the PMEA block decreased the efficiency of the corona cross-linking and led to poorer stabilization and protection.

17.
ACS Macro Lett ; 4(10): 1119-1122, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35614815

RESUMO

For the first time, polymersomes were obtained by self-assembly in water of amphiphilic grafted glycopolymers based on dextran polysaccharidic backbone and polymeric liquid crystal grafts (poly(diethylene glycol cholesteryl ether acrylate), PDEGCholA). After measuring the properties of these glycopolymers in term of surfactancy, the influence of their structural parameters on their self-assemblies once dispersed in water was investigated by static and dynamic light scattering and by cryogenic transmission electron microscopy (cryo-TEM). Based on the results, a proper design of Dex-gN-PDEGCholAF leads to hollow vesicular structure formulation known as polymersome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...