Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(49): 58301-58308, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851625

RESUMO

Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water.

2.
Biomaterials ; 274: 120889, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992836

RESUMO

Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.


Assuntos
Fenômenos Eletrofisiológicos , Polímeros , Animais , Camundongos , Próteses e Implantes
3.
Front Neurosci ; 12: 648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283296

RESUMO

Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum of possibilities to tackle this issue. Nevertheless, despite the advancements in this field, further improvements in the fabrication of conductive hydrogel-based electrodes are still required. In this work, we report the fabrication of a conductive hydrogel-based microelectrode array for neural recording using a hybrid material composed of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), and alginate. The mechanical properties of the conductive hydrogel have been investigated using imaging techniques, while the electrode arrays have been electrochemically characterized at each fabrication step, and successfully validated both in vitro and in vivo. The presence of the conductive hydrogel, selectively electrodeposited onto the platinum microelectrodes, allowed achieving superior electrochemical characteristics, leading to a lower electrical noise during recordings. These findings represent an advancement in the design of soft conductive electrodes for neuroprosthetic applications.

4.
Nat Commun ; 9(1): 992, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520006

RESUMO

Retinal prostheses have been developed to fight blindness in people affected by outer retinal layer dystrophies. To date, few hundred patients have received a retinal implant. Inspired by intraocular lenses, we have designed a foldable and photovoltaic wide-field epiretinal prosthesis (named POLYRETINA) capable of stimulating wireless retinal ganglion cells. Here we show that within a visual angle of 46.3 degrees, POLYRETINA embeds 2215 stimulating pixels, of which 967 are in the central area of 5 mm, it is foldable to allow implantation through a small scleral incision, and it has a hemispherical shape to match the curvature of the eye. We demonstrate that it is not cytotoxic and respects optical and thermal safety standards; accelerated ageing shows a lifetime of at least 2 years. POLYRETINA represents significant progress towards the improvement of both visual acuity and visual field with the same device, a current challenging issue in the field.


Assuntos
Implantação de Prótese/métodos , Próteses Visuais , Humanos , Desenho de Prótese , Retina/fisiologia , Retina/cirurgia , Acuidade Visual/fisiologia
5.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741739

RESUMO

Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions.

6.
ACS Nano ; 11(2): 2000-2007, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28117966

RESUMO

Achieving nanoscale control over the crystalline structure and morphology of electroactive polymer films and the possibility to transfer them onto any solid substrate are important tasks for the fabrication of high-performance organic/polymeric field-effect transistors (FETs). In this work, we demonstrate that ultrathin active layers preassembled at the water/air interface can possess high, anisotropic, and substrate-independent mobility in polymer FETs. By exploiting a modified approach to the Langmuir-Schaeffer technique, we self-assemble conjugated polymers in fibrillar structures possessing controlled thickness, nanoscale structure, and morphology; these highly ordered nanofibrils can be transferred unaltered onto any arbitrary substrate. We show that FETs based on these films possess high and anisotropic hole mobility approaching 1 cm2 V-1 s-1 along the nanofibrils, being over 1 order of magnitude beyond the state-of-the-art for Langmuir-Schaefer polymer FETs. Significantly, we demonstrate that the FET performances are independent of the chemical nature and dielectric permittivity of the substrate, overcoming a critical limit in the field of polymer FETs. Our method allows the fabrication of ultrathin films for low-cost, high-performance, transparent, and flexible devices supported on any dielectric substrate.

7.
ACS Appl Mater Interfaces ; 8(10): 6563-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26890532

RESUMO

Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.

8.
Nanoscale ; 8(4): 2386-94, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26754960

RESUMO

The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.

9.
Adv Mater ; 27(20): 3170-4, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25873005

RESUMO

The self-assembly of an amphiphilic monomolecular electron acceptor-donor dyad into electroactive π-π stacked fibrillar structures can be triggered by irradiation with visible light. These fibers, exposing hydrophilic ethylene glycol in their external shell, show unique characteristics as resistive humidity sensors that exhibit high sensitivity and ultrafast response.


Assuntos
Equipamentos e Provisões Elétricas , Umidade , Elétrons , Etilenoglicol/química , Interações Hidrofóbicas e Hidrofílicas , Imidas/química , Luz , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Nanoestruturas/química , Imagem Óptica , Perileno/análogos & derivados , Perileno/química , Processos Fotoquímicos , Dióxido de Silício , Solventes/química , Fatores de Tempo , Água/química
10.
Nano Lett ; 13(8): 3643-7, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879239

RESUMO

The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm(2) V(-1) s(-1) for electrons and 0.70 cm(2) V(-1) s(-1) for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.


Assuntos
Nanoestruturas/química , Polímeros/química , Estrutura Molecular , Semicondutores
11.
ACS Nano ; 7(2): 1257-64, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23350706

RESUMO

Charge transport in organic thin film transistors takes place in the first few molecular layers in contact with the gate dielectric. Here we demonstrate that the charge transport pathways in these devices are extremely sensitive to the orientational defects of the first monolayers, which arise from specific growth conditions. Although these defects partially heal during the growth, they cause depletion of charge carriers in the first monolayer, and drive the current to flow in the monolayers above the first one. Moreover, the residual defects induce lower crystalline order and charge mobility. These results, which are not intuitively explained by electrostatics arguments, have been obtained by combining in situ real time structural and electrical characterization together with ex situ AFM measurements, on thin films of a relevant n-type organic semiconductor, N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis dicarboximide grown by sublimation in a quasi-layer-by-layer mode at different substrate temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...