Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 891332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832792

RESUMO

With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.

2.
Methods Mol Biol ; 2445: 255-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972997

RESUMO

Autophagy is a dynamic process that can be monitored in multiple ways, both in vitro and in vivo. Studies in mice are a widely used tool to understand multiple diseases and conditions where autophagy plays a role, and therefore autophagic flux measurement in tissues of rodent models are of utmost importance. Here, we present some assays successfully used in determining the autophagy status in the mice mammary gland as well as in xenografts.


Assuntos
Autofagia , Glândulas Mamárias Animais , Animais , Xenoenxertos , Camundongos , Proteínas Associadas aos Microtúbulos , Transplante Heterólogo
3.
Autophagy ; 18(2): 409-422, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101533

RESUMO

Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.Abbreviations: ATG: autophagy related; Baf A1: bafilomycin A1; Becn1: beclin 1; BrdU: bromodeoxyuridine/5-bromo-2'-deoxyuridine; DCX: doublecortin; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HSCs: hematopoietic stem cells; KI: knockin; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mo: month; NSCs: neural stem cells; OB: olfactory bulb; RB1CC1: RB1-inducible coiled-coil 1; ROS: reactive oxygen species; SOX2: SRY (sex determining region Y)-box 2; SGZ: subgranular zone; SVZ: subventricular zone; TMZ: temozolomide; WT: wild type.


Assuntos
Autofagia , Células-Tronco Neurais , Envelhecimento , Animais , Autofagia/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese
4.
Metabolites ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436422

RESUMO

Autophagy is an essential protective mechanism that allows mammalian cells to cope with a variety of stressors and contributes to maintaining cellular and tissue homeostasis. Due to these crucial roles and also to the fact that autophagy malfunction has been described in a wide range of pathologies, an increasing number of in vivo studies involving animal models targeting autophagy genes have been developed. In mammals, total autophagy inactivation is lethal, and constitutive knockout models lacking effectors of this route are not viable, which has hindered so far the analysis of the consequences of a systemic autophagy decline. Here, we take advantage of atg4b-/- mice, an autophagy-deficient model with only partial disruption of the process, to assess the effects of systemic reduction of autophagy on the metabolome. We describe for the first time the metabolic footprint of systemic autophagy decline, showing that impaired autophagy results in highly tissue-dependent alterations that are more accentuated in the skeletal muscle and plasma. These changes, which include changes in the levels of amino-acids, lipids, or nucleosides, sometimes resemble those that are frequently described in conditions like aging, obesity, or cardiac damage. We also discuss different hypotheses on how impaired autophagy may affect the metabolism of several tissues in mammals.

6.
Cell Death Differ ; 28(9): 2651-2672, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33795848

RESUMO

Despite the great advances in autophagy research in the last years, the specific functions of the four mammalian Atg4 proteases (ATG4A-D) remain unclear. In yeast, Atg4 mediates both Atg8 proteolytic activation, and its delipidation. However, it is not clear how these two roles are distributed along the members of the ATG4 family of proteases. We show that these two functions are preferentially carried out by distinct ATG4 proteases, being ATG4D the main delipidating enzyme. In mammalian cells, ATG4D loss results in accumulation of membrane-bound forms of mATG8s, increased cellular autophagosome number and reduced autophagosome average size. In mice, ATG4D loss leads to cerebellar neurodegeneration and impaired motor coordination caused by alterations in trafficking/clustering of GABAA receptors. We also show that human gene variants of ATG4D associated with neurodegeneration are not able to fully restore ATG4D deficiency, highlighting the neuroprotective role of ATG4D in mammals.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Doenças Neurodegenerativas/genética , Sequência de Aminoácidos , Animais , Autofagia , Modelos Animais de Doenças , Humanos , Mamíferos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
8.
J Vis Exp ; (178)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34978290

RESUMO

Resistance training is a physical exercise model with profound benefits for health throughout life. The use of resistance exercise animal models is a way to gain insight into the underlying molecular mechanisms that orchestrate these adaptations. The aim of this article is to describe exercise models and training protocols designed for strength training and evaluation of resistance in animal models and provide examples. In this article, strength training and resistance evaluation are based on ladder climbing activity, using static and dynamic ladders. These devices allow a variety of training models as well as provide precise control of the main variables which determine resistance exercise: volume, load, velocity, and frequency. Furthermore, unlike resistance exercise in humans, this is a forced exercise. Thus, aversive stimuli must be avoided in this intervention to preserve animal welfare. Prior to implementation, a detailed design is necessary, along with an acclimatization and learning period. Acclimatization to training devices, such as ladders, weights, and clinical tape, as well as to the manipulations required, is necessary to avoid exercise rejection and to minimize stress. At the same time, the animals are taught to climb up the ladder, not down, to the resting area on the top of the ladder. Resistance evaluation can characterize physical strength and permit adjusting and quantifying the training load and the response to training. Furthermore, different types of strength can be evaluated. Regarding training programs, with appropriate design and device use, they can be sufficiently versatile to modulate different types of strength. Furthermore, they should be flexible enough to be modified depending on the adaptive and behavioral response of the animals or the presence of injuries. In conclusion, resistance training and assessment using ladders and weights are versatile methods in animal research.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Animais , Exercício Físico , Humanos , Modelos Animais , Força Muscular/fisiologia , Treinamento Resistido/métodos
9.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147747

RESUMO

In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/genética , Animais , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Humanos , Sistema Imunitário , Inflamação , Lisossomos/metabolismo , Prognóstico
10.
J Clin Invest ; 130(6): 2978-2991, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364533

RESUMO

Although autophagy is generally protective, uncontrolled or excessive activation of autophagy can be detrimental. However, it is often difficult to distinguish death by autophagy from death with autophagy, and whether autophagy contributes to death in cardiomyocytes (CMs) is still controversial. Excessive activation of autophagy induces a morphologically and biochemically defined form of cell death termed autosis. Whether autosis is involved in tissue injury induced under pathologically relevant conditions is poorly understood. In the present study, myocardial ischemia/reperfusion (I/R) induced autosis in CMs, as evidenced by cell death with numerous vacuoles and perinuclear spaces, and depleted intracellular membranes. Autosis was observed frequently after 6 hours of reperfusion, accompanied by upregulation of Rubicon, attenuation of autophagic flux, and marked accumulation of autophagosomes. Genetic downregulation of Rubicon inhibited autosis and reduced I/R injury, whereas stimulation of autosis during the late phase of I/R with Tat-Beclin 1 exacerbated injury. Suppression of autosis by ouabain, a cardiac glycoside, in humanized Na+,K+-ATPase-knockin mice reduced I/R injury. Taken together, these results demonstrate that autosis is significantly involved in I/R injury in the heart and triggered by dysregulated accumulation of autophagosomes due to upregulation of Rubicon.


Assuntos
Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Regulação para Cima , Animais , Autofagossomos/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
11.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31941841

RESUMO

Autosis is a distinct form of cell death that requires both autophagy genes and the Na+,K+-ATPase pump. However, the relationship between the autophagy machinery and Na+,K+-ATPase is unknown. We explored the hypothesis that Na+,K+-ATPase interacts with the autophagy protein Beclin 1 during stress and autosis-inducing conditions. Starvation increased the Beclin 1/Na+,K+-ATPase interaction in cultured cells, and this was blocked by cardiac glycosides, inhibitors of Na+,K+-ATPase. Increases in Beclin 1/Na+,K+-ATPase interaction were also observed in tissues from starved mice, livers of patients with anorexia nervosa, brains of neonatal rats subjected to cerebral hypoxia-ischemia (HI), and kidneys of mice subjected to renal ischemia/reperfusion injury (IRI). Cardiac glycosides blocked the increased Beclin 1/Na+,K+-ATPase interaction during cerebral HI injury and renal IRI. In the mouse renal IRI model, cardiac glycosides reduced numbers of autotic cells in the kidney and improved clinical outcome. Moreover, blockade of endogenous cardiac glycosides increased Beclin 1/Na+,K+-ATPase interaction and autotic cell death in mouse hearts during exercise. Thus, Beclin 1/Na+,K+-ATPase interaction is increased in stress conditions, and cardiac glycosides decrease this interaction and autosis in both pathophysiological and physiological settings. This crosstalk between cellular machinery that generates and consumes energy during stress may represent a fundamental homeostatic mechanism.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Isquemia/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Inanição/metabolismo , Animais , Morte Celular/fisiologia , Células Cultivadas , Glicosídeos , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
12.
FASEB J ; 34(2): 3129-3150, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908069

RESUMO

Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.


Assuntos
Envelhecimento/metabolismo , Autofagia , Glucuronidase/metabolismo , Fosfatos/metabolismo , Animais , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Feminino , Glucuronidase/genética , Células HEK293 , Humanos , Rim/metabolismo , Proteínas Klotho , Masculino , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
Cardiovasc Res ; 116(3): 483-504, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504266

RESUMO

Autophagy is a highly conserved recycling mechanism essential for maintaining cellular homeostasis. The pathophysiological role of autophagy has been explored since its discovery 50 years ago, but interest in autophagy has grown exponentially over the last years. Many researchers around the globe have found that autophagy is a critical pathway involved in the pathogenesis of cardiac diseases. Several groups have created novel and powerful tools for gaining deeper insights into the role of autophagy in the aetiology and development of pathologies affecting the heart. Here, we discuss how established and emerging methods to study autophagy can be used to unravel the precise function of this central recycling mechanism in the cardiac system.


Assuntos
Autofagia , Cardiopatias/patologia , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/ultraestrutura , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia Mediada por Chaperonas , Modelos Animais de Doenças , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Miocárdio/metabolismo , Transdução de Sinais
14.
Scand J Med Sci Sports ; 30(2): 238-253, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31650583

RESUMO

Endurance training promotes exercise-induced adaptations in brain, like hippocampal adult neurogenesis and autophagy induction. However, resistance training effect on the autophagy response in the brain has not been much explored. Questions such as whether partial systemic autophagy or the length of training intervention affect this response deserve further attention. Therefore, 8-week-old male wild-type (Wt; n = 36) and systemic autophagy-deficient (atg4b-/- , KO; n = 36) mice were randomly distributed in three training groups, resistance (R), endurance (E), and control (non-trained), and in two training periods, 2 or 14 weeks. R and E maximal tests were evaluated before and after the training period. Forty-eight hours after the end of training program, cerebral cortex, striatum, hippocampus, and cerebellum were extracted for the analysis of autophagy proteins (LC3B-I, LC3B-II, and p62). Additionally, hippocampal adult neurogenesis was determined by doublecortin-positive cells count (DCX+) in brain sections. Our results show that, in contrast to Wt, KO were unable to improve R after both trainings. Autophagy levels in brain areas may be modified by E training only in cerebral cortex of Wt trained for 14 weeks, and in KO trained for 2 weeks. DCX + in Wt increased in R and E after both periods of training, with R for 14 weeks more effective than E. Interestingly, no changes in DCX + were observed in KO after 2 weeks, being even undetectable after 14 weeks of intervention. Thus, autophagy is crucial for R performance and for exercise-induced adult neurogenesis.


Assuntos
Autofagia , Córtex Cerebral/fisiologia , Neurogênese , Condicionamento Físico Animal , Adaptação Fisiológica , Animais , Proteína Duplacortina , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Condicionamento Físico Animal/métodos , Proteína Sequestossoma-1/metabolismo
15.
Nature ; 558(7708): 136-140, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849149

RESUMO

Autophagy increases the lifespan of model organisms; however, its role in promoting mammalian longevity is less well-established1,2. Here we report lifespan and healthspan extension in a mouse model with increased basal autophagy. To determine the effects of constitutively increased autophagy on mammalian health, we generated targeted mutant mice with a Phe121Ala mutation in beclin 1 (Becn1F121A/F121A) that decreases its interaction with the negative regulator BCL2. We demonstrate that the interaction between beclin 1 and BCL2 is disrupted in several tissues in Becn1 F121A/F121A knock-in mice in association with higher levels of basal autophagic flux. Compared to wild-type littermates, the lifespan of both male and female knock-in mice is significantly increased. The healthspan of the knock-in mice also improves, as phenotypes such as age-related renal and cardiac pathological changes and spontaneous tumorigenesis are diminished. Moreover, mice deficient in the anti-ageing protein klotho 3 have increased beclin 1 and BCL2 interaction and decreased autophagy. These phenotypes, along with premature lethality and infertility, are rescued by the beclin 1(F121A) mutation. Together, our data demonstrate that disruption of the beclin 1-BCL2 complex is an effective mechanism to increase autophagy, prevent premature ageing, improve healthspan and promote longevity in mammals.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Longevidade/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Envelhecimento/genética , Animais , Autofagossomos/metabolismo , Proteína Beclina-1/genética , Células Cultivadas , Feminino , Fibroblastos/citologia , Técnicas de Introdução de Genes , Glucuronidase/deficiência , Glucuronidase/genética , Células HeLa , Saúde , Humanos , Proteínas Klotho , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
16.
Nature ; 561(7723): E30, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29921925

RESUMO

In this Letter, the graphs in Fig. 2a and c were inadvertently the same owing to a copy and paste error from the original graphs in Prism. The Source Data files containing the raw data were correct. Fig. 2c has been corrected online.

17.
Proc Natl Acad Sci U S A ; 115(16): 4176-4181, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610308

RESUMO

Allelic loss of the autophagy gene, beclin 1/BECN1, increases the risk of patients developing aggressive, including human epidermal growth factor receptor 2 (HER2)-positive, breast cancers; however, it is not known whether autophagy induction may be beneficial in preventing HER2-positive breast tumor growth. We explored the regulation of autophagy in breast cancer cells by HER2 in vitro and the effects of genetic and pharmacological strategies to increase autophagy on HER2-driven breast cancer growth in vivo. Our findings demonstrate that HER2 interacts with Beclin 1 in breast cancer cells and inhibits autophagy. Mice with increased basal autophagy due to a genetically engineered mutation in Becn1 are protected from HER2-driven mammary tumorigenesis, and HER2 fails to inhibit autophagy in primary cells derived from these mice. Moreover, treatment of mice with HER2-positive human breast cancer xenografts with the Tat-Beclin 1 autophagy-inducing peptide inhibits tumor growth as effectively as a clinically used HER2 tyrosine kinase inhibitor (TKI). This inhibition of tumor growth is associated with a robust induction of autophagy, a disruption of HER2/Beclin 1 binding, and a transcriptional signature in the tumors distinct from that observed with HER2 TKI treatment. Taken together, these findings indicate that the HER2-mediated inhibition of Beclin 1 and autophagy likely contributes to HER2-mediated tumorigenesis and that strategies to block HER2/Beclin 1 binding and/or increase autophagy may represent a new therapeutic approach for HER2-positive breast cancers.


Assuntos
Autofagia , Proteína Beclina-1/fisiologia , Proteínas de Neoplasias/fisiologia , Receptor ErbB-2/fisiologia , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Humanos , Lapatinib , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Mutação , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Distribuição Aleatória , Receptor ErbB-2/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Methods Mol Biol ; 1731: 73-81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29318545

RESUMO

Autophagy is a catabolic process triggered in the cell by a wide range of stress stimuli, both external (including nutrient deprivation) and internal (like the presence of protein aggregates or damaged organelles). First described in yeast, this pathway has recently gained major importance due to its role in several pathologies, from inflammatory processes to cancer or aging. However, its analysis can be easily misinterpreted if it is not done properly, leading to conflicting results. Here, the classical autophagy flux study by Western blot is described, as a first and basic analysis of the status of autophagy in a given system.


Assuntos
Autofagia/efeitos dos fármacos , Western Blotting/métodos , Peptídeo Hidrolases/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Western Blotting/instrumentação , Linhagem Celular Tumoral , Humanos , Macrolídeos/farmacologia
19.
Cell Death Dis ; 8(8): e2970, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28771229

RESUMO

In the last years, autophagy has been revealed as an essential pathway for multiple biological processes and physiological functions. As a catabolic route, autophagy regulation by nutrient availability has been evolutionarily conserved from yeast to mammals. On one hand, autophagy induction by starvation is associated with a significant loss in body weight in mice. Here, we demonstrate that both genetic and pharmacological inhibition of the autophagy process compromise weight loss induced by starvation. Moreover, autophagic potential also impacts on weight gain induced by distinct hypercaloric regimens. Atg4b-deficient mice, which show limited autophagic competence, exhibit a major increase in body weight in response to distinct obesity-associated metabolic challenges. This response is characterized by the presence of larger adipocytes in visceral fat tissue, increased hepatic steatosis, as well as reduced glucose tolerance and attenuated insulin responses. Similarly, autophagy-deficient mice are more vulnerable to experimentally induced type-I diabetes, showing an increased susceptibility to acute streptozotocin administration. Notably, pharmacological stimulation of autophagy in wild-type mice by spermidine reduced both weight gain and obesity-associated alterations upon hypercaloric regimens. Altogether, these results indicate that systemic autophagic activity influences the resilience of the organism to weight gain induced by high-calorie diets, as well as to the obesity-associated features of both type-1 and type-2 diabetes.


Assuntos
Autofagia , Dieta/efeitos adversos , Células Secretoras de Insulina/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Proteínas Relacionadas à Autofagia/deficiência , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Cisteína Endopeptidases/deficiência , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...