Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6539): 300-303, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859037

RESUMO

The study of deep-time ecological dynamics has the ability to inform conservation decisions by anticipating the behavior of ecosystems millions of years into the future. Using network analysis and an exceptional fossil dataset spanning the past 21 million years, we show that mammalian ecological assemblages undergo long periods of functional stasis, notwithstanding high taxonomic volatility due to dispersal, speciation, and extinction. Higher functional richness and diversity promoted the persistence of functional faunas despite species extinction risk being indistinguishable among these different faunas. These findings, and the large mismatch between functional and taxonomic successions, indicate that although safeguarding functional diversity may or may not minimize species losses, it would certainly enhance the persistence of ecosystem functioning in the face of future disturbances.


Assuntos
Evolução Biológica , Ecossistema , Fósseis , Mamíferos , Distribuição Animal , Animais , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Extinção Biológica , Especiação Genética , Mamíferos/classificação , Dinâmica Populacional
3.
Proc Biol Sci ; 281(1776): 20132746, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24352949

RESUMO

Global climate shifts and ecological flexibility are two major factors that may affect rates of speciation and extinction across clades. Here, we connect past climate to changes in diet and diversification dynamics of ruminant mammals. Using novel versions of Multi-State Speciation and Extinction models, we explore the most likely scenarios for evolutionary transitions among diets in this clade and ask whether ruminant lineages with different feeding styles (browsing, grazing and mixed feeding) underwent differential rates of diversification concomitant with global temperature change. The best model of trait change had transitions from browsers to grazers via mixed feeding, with appreciable rates of transition to and from grazing and mixed feeding. Diversification rates in mixed-feeder and grazer lineages tracked the palaeotemperature curve, exhibiting higher rates during the Miocene thermal maxima. The origination of facultative mixed diet and grazing states may have triggered two adaptive radiations--one during the Oligocene-Miocene transition and the other during Middle-to-Late Miocene. Our estimate of mixed diets for basal lineages of both bovids and cervids is congruent with fossil evidence, while the reconstruction of browser ancestors for some impoverished clades--Giraffidae and Tragulidae--is not. Our results offer model-based neontological support to previous palaeontological findings and fossil-based hypothesis highlighting the importance of dietary innovations--especially mixed feeding--in the success of ruminants during the Neogene.


Assuntos
Adaptação Biológica/fisiologia , Biodiversidade , Evolução Biológica , Mudança Climática , Dieta/história , Ruminantes/fisiologia , Animais , Comportamento Alimentar/fisiologia , História Antiga , Filogenia , Ruminantes/genética , Especificidade da Espécie
4.
BMC Evol Biol ; 8: 97, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18366786

RESUMO

BACKGROUND: This paper tests Vrba's resource-use hypothesis, which predicts that generalist species have lower specialization and extinction rates than specialists, using the 879 species of South American mammals. We tested several predictions about this hypothesis using the biomic specialization index (BSI) for each species, which is based on its geographical range within different climate-zones. The four predictions tested are: (1) there is a high frequency of species restricted to a single biome, which henceforth are referred to as stenobiomic species, (2) certain clades are more stenobiomic than others, (3) there is a higher proportion of biomic specialists in biomes that underwent through major expansion-contraction alternation due to the glacial-interglacial cycles, (4) certain combinations of inhabited biomes occur more frequently among species than do others. RESULTS: Our results are consistent with these predictions. (1) We found that 42 % of the species inhabit only one biome. (2) There are more generalists among species of Carnivora than in clades of herbivores. However, Artiodactyla, shows a distribution along the specialization gradient different from the one expected. (3) Biomic specialists are predominant in tropical rainforest and desert biomes. Nevertheless, we found some differences between small and large mammals in relation to these results. Stenobiomic species of micromammalian clades are more abundant in most biomes than expected by chance, while in the case of macromammalian clades stenobiomic species are more frequent than expected in tropical rainforest, tropical deciduous woodland and desert biomes only. (4) The most frequent combinations of inhabited biomes among the South American mammals are those with few biomes, i.e., the ones that suffered a higher rate of vicariance due to climatic cycles. CONCLUSION: Our results agree with the resource-use hypothesis and, therefore, with a major role of the past climatic changes as drivers of mammalian evolution. Nevertheless, deviations from the expectations indicate the importance of differences in reproductive traits and paleobiogeographic history for the macroevolutionary processes involved. In the case of South American mammals, the Pliocene Great American Biotic Interchange strongly influences the ecological characteristics of this assemblage. Furthermore, the Andes have acted as a fertile ground for speciation in environments prone to vicariance. Finally, the micromammals appear as more prone to biomic specialization than larger species. These factors are responsible for some of the differences found between South America and Africa in the studied pattern. For example, the extensive South American mountain ranges favour a higher number of combinations of inhabited biomes in comparison with Africa.


Assuntos
Evolução Biológica , Ecossistema , Especiação Genética , Mamíferos/genética , Animais , Clima , Método de Monte Carlo , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...