Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 10(2): e00913, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35184416

RESUMO

G protein-coupled receptors kinase 2 (GRK2) plays a major role in receptor regulation and, as a consequence, in cell biology and physiology. GRK2-mediated receptor desensitization is performed by its kinase domain, which exerts receptor phosphorylation promoting G protein uncoupling and the cessation of signaling, and by its RGS homology (RH) domain, able to interrupt G protein signaling. Since GRK2 activity is exacerbated in several pathologies, many efforts to develop inhibitors have been conducted. Most of them were directed toward GRK2 kinase activity and showed encouraging results on in vitro systems and animal models. Nevertheless, limitations including unspecific effects or pharmacokinetics issues prevented them from advancing to clinical trials. Surprisingly, even though the RH domain demonstrated the ability to desensitize GPCRs, this domain has been less explored. Herein, we show in vitro activity of a series of compounds that, by inhibiting GRK2 RH domain, increase receptor cAMP response, avoid GRK2 translocation to the plasma membrane, inhibit coimmunoprecipitation of GRK2 with Gαs subunit of heterotrimeric G protein, and prevent receptor desensitization. Also, we preliminarily evaluated candidates' ADMET properties and observed suitable lipophilicity and cytotoxicity. These novel inhibitors of phosphorylation-independent actions of GRK2 might be useful in elucidating other RH domain roles and lay the foundation for the development of innovative pharmacologic therapy for diseases where GRK2 activity is exacerbated.


Assuntos
AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Linhagem Celular Tumoral , Desenvolvimento de Medicamentos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos/efeitos dos fármacos , Proteínas RGS/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Eur J Pharmacol ; 896: 173913, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508282

RESUMO

Histamine H1 receptor ligands used clinically as antiallergics rank among the most widely prescribed and over-the-counter drugs in the world. They exert the therapeutic actions by blocking the effects of histamine, due to null or negative efficacy towards Gαq-phospholipase C (PLC)-inositol triphosphates (IP3)-Ca2+ and nuclear factor-kappa B cascades. However, there is no information regarding their ability to modulate other receptor responses. The aim of the present study was to investigate whether histamine H1 receptor ligands could display positive efficacy concerning receptor desensitization, internalization, signaling through Gαq independent pathways or even transcriptional regulation of proinflammatory genes. While diphenhydramine, triprolidine and chlorpheniramine activate ERK1/2 (extracellular signal-regulated kinase 1/2) pathway in A549 cells, pre-treatment with chlorpheniramine or triprolidine completely desensitize histamine H1 receptor mediated Ca2+ response, and both diphenhydramine and triprolidine lead to receptor internalization. Unlike histamine, histamine H1 receptor desensitization and internalization induced by antihistamines prove to be independent of G protein-coupled receptor kinase 2 (GRK2) phosphorylation. Also, unlike the reference agonist, the recovery of the number of cell-surface histamine H1 receptors is a consequence of de novo synthesis. On the other hand, all of the ligands lack efficacy regarding cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) mRNA regulation. However, a prolonged exposure with each of the antihistamines impaires the increase in COX-2 and IL-8 mRNA levels induced by histamine, even after ligand removal. Altogether, these findings demonstrate the biased nature of histamine H1 receptor ligands contributing to a more accurate classification, and providing evidence for a more rational and safe use of them.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Receptores Histamínicos H1/efeitos dos fármacos , Células A549 , Sinalização do Cálcio/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Agonismo Inverso de Drogas , Ativação Enzimática , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Ligantes , Fosforilação , Transporte Proteico , Receptores Histamínicos H1/metabolismo , Fosfolipases Tipo C/metabolismo
3.
Front Pharmacol ; 10: 146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853914

RESUMO

The MasR receptor (MasR) is an orphan G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang-(1-7) protective axis of renin-angiotensin system. This receptor has been suggested to participate in several physiological processes including cardio- and reno-protection and regulation of the central nervous system function. Although the knowledge of the signaling mechanisms associated with MasR is essential for therapeutic purposes, these are still poorly understood. Accordingly, in the current study we aimed to characterize the signaling pathways triggered by the MasR. To do that, we measured cAMP and Ca2+ levels in both naïve and MasR transfected cells in basal conditions and upon incubation with putative MasR ligands. Besides, we evaluated activation of ERK1/2 by Ang-(1-7) in MasR transfected cells. Results indicated the existence of a high degree of MasR constitutive activity toward cAMP modulation. This effect was not mediated by the PDZ-binding motif of the MasR but by receptor coupling to Gαi-adenylyl cyclase signaling pathway. Incubation of MasR transfected cells with Ang-(1-7) or the synthetic ligand AVE 0991 amplified MasR negative modulation of cAMP levels. On the other hand, we provided evidence for lack of MasR-associated modulation of Ca2+ levels by Ang-(1-7). Finally, it was determined that the MasR attenuated Ang-(1-7)-induced ERK1/2 phosphorylation mediated by AT1R. We provided further characterization of MasR signaling mechanisms regarding its constitutive activity and response to putative ligands. This information could prove useful to better describe MasR physiological role and development of therapeutic agents that could modulate its action.

4.
Front Pharmacol ; 6: 45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25805997

RESUMO

Histamine mediates numerous functions acting through its four receptor subtypes all belonging to the large family of seven transmembrane G-protein coupled receptors. In particular, histamine H2 receptor (H2R) is mainly involved in gastric acid production, becoming a classic pharmacological target to treat Zollinger-Ellison disease and gastric and duodenal ulcers. H2 ligands rank among the most widely prescribed and over the counter-sold drugs in the world. Recent evidence indicate that some H2R ligands display biased agonism, selecting and triggering some, but not all, of the signaling pathways associated to the H2R. The aim of the present work is to study whether famotidine, clinically widespread used ligand acting at H2R, exerts biased signaling. Our findings indicate that while famotidine acts as inverse agonist diminishing cAMP basal levels, it mimics the effects of histamine and the agonist amthamine concerning receptor desensitization and internalization. Moreover, the treatment of HEK293T transfected cells with any of the three ligands lead to a concentration dependent pERK increment. Similarly in AGS gastric epithelial cells, famotidine treatment led to both, the reduction in cAMP levels as well as the increment in ERK phosphorylation, suggesting that this behavior could have pharmacological relevant implications. Based on that, histidine decarboxylase expression was studied by quantitative PCR in AGS cells and its levels were increased by famotidine as well as by histamine and amthamine. In all cases, the positive regulation was impeded by the MEK inhibitor PD98059, indicating that biased signaling toward ERK1/2 pathway is the responsible of such enzyme regulation. These results support that ligand bias is not only a pharmacological curiosity but has physiological and pharmacological implications on cell metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...