Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1278571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020928

RESUMO

The telomere bouquet is a specific chromosomal configuration that forms during meiosis at the zygotene stage, when telomeres cluster together at the nuclear envelope. This clustering allows cytoskeleton-induced movements to be transmitted to the chromosomes, thereby facilitating homologous chromosome search and pairing. However, loss of the bouquet results in more severe meiotic defects than can be attributed solely to recombination problems, suggesting that the bouquet's full function remains elusive. Despite its transient nature and the challenges in performing in vivo analyses, information is emerging that points to a remarkable suite of non-canonical functions carried out by the bouquet. Here, we describe how new approaches in quantitative cell biology can contribute to establishing the molecular basis of the full function and plasticity of the bouquet, and thus generate a comprehensive picture of the telomeric control of meiosis.

2.
STAR Protoc ; 4(4): 102655, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864786

RESUMO

Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles. The analysis of the dynamics of self-assembled spindles is a challenge due to the low availability of oocytes. Here, we present a protocol for analyzing self-assembled spindle dynamics in fission yeast meiosis using in vivo fluorescence imaging. We describe steps for starter culture preparation, meiosis induction, and sample preparation. We then detail procedures for acquisition and analysis of images of self-assembled spindles. For complete details on the use and execution of this protocol, please refer to Pineda-Santaella and Fernández-Álvarez (2019)1 and Pineda-Santaella et al. (2021).2.


Assuntos
Schizosaccharomyces , Fuso Acromático , Feminino , Humanos , Microtúbulos , Meiose , Imagem Óptica
3.
Mol Biol Cell ; 33(5): br8, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274979

RESUMO

During cell cycle progression in metazoans, the kinetochore is assembled at mitotic onset and disassembled during mitotic exit. Once assembled, the kinetochore complex attached to centromeres interacts directly with the spindle microtubules, the vehicle of chromosome segregation. This reassembly program is assumed to be absent in budding and fission yeast, because most kinetochore proteins are stably maintained at the centromeres throughout the entire cell cycle. Here, we show that the reassembly program of the outer kinetochore at mitotic onset is unexpectedly conserved in the fission yeast Schizosaccharomyces pombe. We identified this behavior by removing the Rabl chromosome configuration, in which centromeres are permanently associated with the nuclear envelope beneath the spindle pole body during interphase. In addition to having evolutionary implications for kinetochore reassembly, our results aid the understanding of the molecular processes responsible for kinetochore disassembly and assembly during mitotic entry.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Segregação de Cromossomos , Cinetocoros/metabolismo , Mitose , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
4.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34346498

RESUMO

Chromosome segregation in female meiosis in many metazoans is mediated by acentrosomal spindles, the existence of which implies that microtubule spindles self-assemble without the participation of the centrosomes. Although it is thought that acentrosomal meiosis is not conserved in fungi, we recently reported the formation of self-assembled microtubule arrays, which were able to segregate chromosomes, in fission yeast mutants, in which the contribution of the spindle pole body (SPB; the centrosome equivalent in yeast) was specifically blocked during meiosis. Here, we demonstrate that this unexpected microtubule formation represents a bona fide type of acentrosomal spindle. Moreover, a comparative analysis of these self-assembled spindles and the canonical SPB-dependent spindle reveals similarities and differences; for example, both spindles have a similar polarity, but the location of the γ-tubulin complex differs. We also show that the robustness of self-assembled spindles can be reinforced by eliminating kinesin-8 family members, whereas kinesin-8 mutants have an adverse impact on SPB-dependent spindles. Hence, we consider that reinforced self-assembled spindles in yeast will help to clarify the molecular mechanisms behind acentrosomal meiosis, a crucial step towards better understanding gametogenesis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Feminino , Humanos , Cinesinas/genética , Meiose , Microtúbulos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética , Corpos Polares do Fuso
5.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440781

RESUMO

Nuclear movements during meiotic prophase, driven by cytoskeleton forces, are a broadly conserved mechanism in opisthokonts and plants to promote pairing between homologous chromosomes. These forces are transmitted to the chromosomes by specific associations between telomeres and the nuclear envelope during meiotic prophase. Defective chromosome movements (CMs) harm pairing and recombination dynamics between homologues, thereby affecting faithful gametogenesis. For this reason, modelling the behaviour of CMs and their possible microvariations as a result of mutations or physico-chemical stress is important to understand this crucial stage of meiosis. Current developments in high-throughput imaging and image processing are yielding large CM datasets that are suitable for data mining approaches. To facilitate adoption of data mining pipelines, we present ChroMo, an interactive, unsupervised cloud application specifically designed for exploring CM datasets from live imaging. ChroMo contains a wide selection of algorithms and visualizations for time-series segmentation, motif discovery, and assessment of causality networks. Using ChroMo to analyse meiotic CMs in fission yeast, we found previously undiscovered features of CMs and causality relationships between chromosome morphology and trajectory. ChroMo will be a useful tool for understanding the behaviour of meiotic CMs in yeast and other model organisms.


Assuntos
Algoritmos , Segregação de Cromossomos , Cromossomos Fúngicos , Interpretação de Imagem Assistida por Computador , Meiose , Microscopia de Fluorescência , Schizosaccharomyces/crescimento & desenvolvimento , Imagem com Lapso de Tempo , Automação Laboratorial , Computação em Nuvem , Ensaios de Triagem em Larga Escala , Schizosaccharomyces/genética , Fatores de Tempo
6.
J Fungi (Basel) ; 7(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922798

RESUMO

Protein O-mannosyltransferases (Pmts) comprise a group of proteins that add mannoses to substrate proteins at the endoplasmic reticulum. This post-translational modification is important for the faithful transfer of nascent glycoproteins throughout the secretory pathway. Most fungi genomes encode three O-mannosyltransferases, usually named Pmt1, Pmt2, and Pmt4. In pathogenic fungi, Pmts, especially Pmt4, are key factors for virulence. Although the importance of Pmts for fungal pathogenesis is well established in a wide range of pathogens, questions remain regarding certain features of Pmts. For example, why does the single deletion of each pmt gene have an asymmetrical impact on host colonization? Here, we analyse the origin of Pmts in fungi and review the most important phenotypes associated with Pmt mutants in pathogenic fungi. Hence, we highlight the enormous relevance of these glycotransferases for fungal pathogenic development.

7.
PLoS Pathog ; 15(11): e1007687, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730668

RESUMO

Fungal pathogenesis depends on accurate secretion and location of virulence factors which drive host colonization. Protein glycosylation is a common posttranslational modification of cell wall components and other secreted factors, typically required for correct protein localization, secretion and function. Thus, the absence of glycosylation is associated with animal and plant pathogen avirulence. While the relevance of protein glycosylation for pathogenesis has been well established, the main glycoproteins responsible for the loss of virulence observed in glycosylation-defective fungi have not been identified. Here, we devise a proteomics approach to identify such proteins and use it to demonstrate a role for the highly conserved protein disulfide isomerase Pdi1 in virulence. We show that efficient Pdi1 N-glycosylation, which promotes folding into the correct protein conformation, is required for full pathogenic development of the corn smut fungus Ustilago maydis. Remarkably, the observed virulence defects are reminiscent of those seen in glycosylation-defective cells suggesting that the N-glycosylation of Pdi1 is necessary for the full secretion of virulence factors. All these observations, together with the fact that Pdi1 protein and RNA expression levels rise upon virulence program induction, suggest that Pdi1 glycosylation is important for normal pathogenic development in U. maydis. Our results provide new insights into the role of glycosylation in fungal pathogenesis.


Assuntos
Glicoproteínas/metabolismo , Doenças das Plantas/microbiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Zea mays/microbiologia , Glicoproteínas/genética , Glicosilação , Isomerases de Dissulfetos de Proteínas/genética , Proteoma/análise , Ustilago/enzimologia , Virulência , Fatores de Virulência/genética
8.
Chromosoma ; 128(3): 267-277, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31152193

RESUMO

Centrosomes represent the major microtubule organizing center (MTOC) in eukaryotic cells and are responsible for nucleation of the spindle, the vehicle of chromosome segregation. In human female meiosis, however, spindle assembly occurs in the absence of centrosomes or other MTOCs and microtubules are nucleated around chromosomes. In yeast, spindle formation in mitosis and meiosis depends on the activity of spindle pole bodies (SPBs), the functional equivalents of centrosomes; thus, SPBs and centrosomes use similar machineries to assemble spindles. Here, we develop a system to explore the molecular mechanisms supporting acentrosomal spindle formation using fission yeast meiosis as a model scenario. We achieve this situation by removing access of the SPBs to the nucleus after their duplication. Under these conditions, we observe self-assembly-based spindle formation in the nuclear environment, conferring an ability to segregate chromosomes independently of the SPBs. Our results open the possibility to utilize the experimental advantages of fission yeast for insights into the molecular basis of acentrosomal spindle formation in meiosis.


Assuntos
Meiose , Membrana Nuclear/metabolismo , Schizosaccharomyces/fisiologia , Fuso Acromático/metabolismo , Corpos Polares do Fuso/metabolismo , Segregação de Cromossomos , Microtúbulos/metabolismo
9.
Cell Cycle ; 16(15): 1392-1396, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28678660

RESUMO

Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates this centromere association. The functional significance of centromere positioning during interphase has been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin interacting domains. We recapitulate these observations and their implications for the functional significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide range of eukaryotes.


Assuntos
Centrômero/metabolismo , Mitose/fisiologia , Membrana Nuclear/metabolismo , Telômero/metabolismo , Centrômero/genética , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Meiose/genética , Meiose/fisiologia , Mitose/genética , Modelos Biológicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo , Telômero/genética
10.
Trends Cell Biol ; 27(4): 255-265, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28024902

RESUMO

The mammalian nuclear division cycle is coordinated with nuclear envelope breakdown (NEBD), in which the entire nuclear envelope (NE) is dissolved to allow chromosomes to access their segregation vehicle, the spindle. In other eukaryotes, complete NEBD is replaced by localized disassembly or remodeling of the NE. Although the molecular mechanisms controlling NE disassembly are incompletely understood, coordinated cycles of modification of specific NE components drive breakdown. Here, we review the current state of knowledge regarding NE disassembly and argue for a role of chromosome-NE contacts in triggering initiation of NE disassembly and thereby, cell division.


Assuntos
Cromossomos/metabolismo , Membrana Nuclear/metabolismo , Animais , Evolução Biológica , Comunicação Celular , Cromatina/metabolismo , Humanos , Modelos Biológicos
11.
Dev Cell ; 39(5): 544-559, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27889481

RESUMO

Faithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres. We previously showed that loss of telomere-LINC contacts compromises meiotic spindle formation. Here, we define the precise events regulated by telomere-LINC contacts and address the analogous possibility that centromeres regulate mitotic spindle formation. We develop conditionally inactivated LINC complexes in which the conserved SUN-domain protein Sad1 remains stable but severs interphase centromere-LINC contacts. Strikingly, the loss of such contacts abolishes spindle formation. We pinpoint the defect to a failure in the partial NE breakdown required for centrosome insertion into the NE, a step analogous to mammalian NE breakdown. Thus, interphase chromosome-LINC contacts constitute a cell-cycle control device linking nucleoplasmic and cytoplasmic events.


Assuntos
Membrana Nuclear/fisiologia , Schizosaccharomyces/fisiologia , Corpos Polares do Fuso/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Centrômero/fisiologia , Centrossomo/fisiologia , Segregação de Cromossomos/fisiologia , Genoma Fúngico , Interfase/fisiologia , Mitose/fisiologia , Mutação , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Telômero/fisiologia
12.
PLoS Pathog ; 11(8): e1005134, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317403

RESUMO

Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Histona Desacetilases/genética , Ustilago/genética , Ustilago/patogenicidade , Virulência/genética , Western Blotting , Imunoprecipitação da Cromatina , Conjugação Genética , Proteínas Fúngicas/genética , Genes Fúngicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ustilago/enzimologia
13.
Nat Cell Biol ; 17(4): 458-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774833

RESUMO

The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres.


Assuntos
Centrômero/metabolismo , Meiose/genética , Schizosaccharomyces/genética , Fuso Acromático/genética , Telômero/metabolismo , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/biossíntese , Proteínas de Ligação a Telômeros/genética
14.
J Cell Biol ; 208(4): 415-28, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25688135

RESUMO

Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere-centrosome contact instead of telomere-centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.


Assuntos
Centrômero/genética , Centrossomo/metabolismo , Meiose , Schizosaccharomyces/genética , Fuso Acromático/genética , Telômero/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromossomos Fúngicos/genética , Dineínas/genética , Endorribonucleases/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/biossíntese , Proteínas de Ligação a Telômeros/genética
15.
Plant Cell ; 25(11): 4676-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24280385

RESUMO

Secreted fungal effectors mediate plant-fungus pathogenic interactions. These proteins are typically N-glycosylated, a common posttranslational modification affecting their location and function. N-glycosylation consists of the addition, and subsequent maturation, of an oligosaccharide core in the endoplasmic reticulum (ER) and Golgi apparatus. In this article, we show that two enzymes catalyzing specific stages of this pathway in maize smut (Ustilago maydis), glucosidase I (Gls1) and glucosidase II ß-subunit (Gas2), are essential for its pathogenic interaction with maize (Zea mays). Gls1 is required for the initial stages of infection following appressorium penetration, and Gas2 is required for efficient fungal spreading inside infected tissues. While U. maydis Δgls1 cells induce strong plant defense responses, Δgas2 hyphae are able to repress them, showing that slight differences in the N-glycoprotein processing can determine the extent of plant-fungus interactions. Interestingly, the calnexin protein, a central element of the ER quality control system for N-glycoproteins in eukaryotic cells, is essential for avoiding plant defense responses in cells with defective N-glycoproteins processing. Thus, N-glycoprotein maturation and this conserved checkpoint appear to play an important role in the establishment of an initial biotrophic state with the plant, which allows subsequent colonization.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas Fúngicas/metabolismo , Glucosidases/metabolismo , Ustilago/metabolismo , Ustilago/patogenicidade , Zea mays/microbiologia , Calnexina/genética , Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Glucosidases/genética , Glicoproteínas/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno , Mutação , Filogenia , Doenças das Plantas/microbiologia , Ustilago/enzimologia , Zea mays/fisiologia
16.
PLoS Pathog ; 8(3): e1002563, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22416226

RESUMO

The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis.


Assuntos
Proteínas Fúngicas/isolamento & purificação , Manosiltransferases/isolamento & purificação , Micotoxinas/isolamento & purificação , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Fatores de Virulência/isolamento & purificação , Biologia Computacional/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Estrutura Molecular , Micotoxinas/química , Micotoxinas/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Relação Estrutura-Atividade , Fator de Transcrição Pit-1/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Zea mays/microbiologia , Zea mays/ultraestrutura
17.
PLoS Pathog ; 7(9): e1002235, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909277

RESUMO

A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas de Plantas/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Ustilago/genética , Virulência/genética , Zea mays/microbiologia
18.
Plant Cell ; 23(4): 1654-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478441

RESUMO

In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response.


Assuntos
Dano ao DNA , Transdução de Sinais , Ustilago/crescimento & desenvolvimento , Zea mays/microbiologia , Ciclo Celular , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Fosforilação , Proteínas Quinases/metabolismo , Ustilago/citologia , Ustilago/enzimologia , Ustilago/patogenicidade , Virulência
19.
Fungal Genet Biol ; 47(9): 727-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20554055

RESUMO

The corn smut fungus Ustilago maydis has, over recent decades, become established as a robust pathogenic model for studying fungi-plant relationships. This use of U. maydis can be attributed to its biotrophic host interaction, easy culture and genetic manipulation in the laboratory, and the severe disease symptoms it induces in infected maize. Recent studies have shown that normal protein glycosylation is essential for pathogenic development, but dispensable for the saprophytic growth or mating. Given the relevance of protein glycosylation for U. maydis virulence, and consequently its role in the plant pathogenesis, here we review the main actors and events implicated in protein glycosylation. Furthermore, we describe the results of an in silico search, where we identify all the conserved members of the N- and O-glycosylation pathways in U. maydis at each stage: core oligosaccharide synthesis, addition of the core oligosaccharide to nascent target proteins, maturation and extension of the core oligosaccharide, and the quality control system used by the cell to avoid the presence of unfolded glycoproteins. Finally, we discuss how these genes could affect U. maydis virulence and their biotechnological implications.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Genômica , Oligossacarídeos/biossíntese , Doenças das Plantas/microbiologia , Ustilago/metabolismo , Retículo Endoplasmático/genética , Proteínas Fúngicas/genética , Glicosilação , Ustilago/genética , Ustilago/patogenicidade , Virulência
20.
Plant Signal Behav ; 5(4): 412-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061799

RESUMO

Fungal plant pathogenesis involves complex crosstalk between fungi and their plant hosts. In the case of biotrophic fungi, the host interaction is finely controlled to maintain plant viability during infection since the fungus depends on the survival of colonized plant cells. Many proteins which participate in this process are thought to be glycosylated. Thus, defects in the glycosylation of fungal proteins might alter the normally attenuated plant response and consequently affect fungal progression. O-mannosyltransferases are responsible for adding mannose residues onto target proteins, with each O-mannosyltransferase having individual target specificities. In an earlier study, we showed that O-mannosylation is essential for Ustilago maydis virulence. We found that the loss of O-mannosyltransferase PMT4 was associated with a reduced formation frequency of the invasive morphogenic structure known as the appressorium, combined with a loss in their ability to penetrate plant cuticle. Here, we discuss the possible molecular causes of these phenotypes and present additional evidence, which argue against an alteration of plant response to fungal infection as the primary cause of the Δpmt4 phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...