Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 153: 39-52, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690217

RESUMO

Phosphorus has been considered as a pollutant to be removed from the wastewater. In the last years, however, it has been considered a valuable asset that needs to be recovered due to its shortage in nature. The study of optimum phosphorus management in wastewater treatment plants is not straightforward, due to the complexity of technologies and configurations that may be applied for phosphorus removal and recovery. In this context, plant-wide mathematical modelling and simulation tools are very useful for carrying out these studies. This paper introduces a study carried out at the Sur WWTP (Madrid) to assess optimum phosphorus management strategies based on the PWM. The mathematical model made it possible to describe the phosphorus flux and its characterization throughout the plant. Finally, an exploration by simulation with WEST™ was carried out to analyse different plant configurations and different operational strategies to optimize phosphorus management strategies in the Sur WWTP.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Modelos Teóricos , Esgotos , Águas Residuárias
2.
Water Res ; 129: 305-318, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156395

RESUMO

This paper introduces a new mathematical model built under the PC-PWM methodology to describe the aeration process in a full-scale WWTP. This methodology enables a systematic and rigorous incorporation of chemical and physico-chemical transformations into biochemical process models, particularly for the description of liquid-gas transfer to describe the aeration process. The mathematical model constructed is able to reproduce biological COD and nitrogen removal, liquid-gas transfer and chemical reactions. The capability of the model to describe the liquid-gas mass transfer has been tested by comparing simulated and experimental results in a full-scale WWTP. Finally, an exploration by simulation has been undertaken to show the potential of the mathematical model.


Assuntos
Modelos Teóricos , Transição de Fase , Purificação da Água , Nitrogênio , Esgotos
3.
Water Res ; 118: 272-288, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456110

RESUMO

The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents, especially at high COD concentrations. The plant layouts proposed in this paper are just a sample of the possibilities offered by current technologies. Even so, the library presented here is generic and can be used to construct any other plant layout, provided that a model is available.


Assuntos
Águas Residuárias , Purificação da Água/instrumentação , Esgotos , Eliminação de Resíduos Líquidos
4.
Water Sci Technol ; 75(3-4): 518-529, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192346

RESUMO

Given the shift in perception of wastewater treatment plants as water resource recovery facilities, conventional mathematical models need to be updated. The resource recovery perspective should be applied to new processes, technologies and plant layouts. The number and level of models proposed to date give an overview of the complexity of the new plant configurations and provides a wide range of possibilities and process combinations in order to construct plant layouts. This diversity makes the development of standard, modular and flexible tools and model libraries that allow the incorporation of new processes and components in a straightforward way a necessity. In this regard, the plant-wide modelling (PWM) library is a complete model library that includes conventional and advanced technologies and that allows economic and energetic analyses to be carried out in a holistic way. This paper shows the fundamentals of this PWM library that is built upon the above-mentioned premises and the application of the PWM library in three different full-scale case studies.


Assuntos
Modelos Teóricos , Esgotos/química , Águas Residuárias/química , Purificação da Água/métodos , Espanha , Purificação da Água/economia
5.
Water Res ; 74: 239-56, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25746499

RESUMO

This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery.


Assuntos
Modelos Teóricos , Nitrogênio/química , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/economia , Águas Residuárias/química
6.
Water Res ; 60: 141-155, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24852412

RESUMO

This paper presents a new modelling methodology for dynamically predicting the heat produced or consumed in the transformations of any biological reactor using Hess's law. Starting from a complete description of model components stoichiometry and formation enthalpies, the proposed modelling methodology has integrated successfully the simultaneous calculation of both the conventional mass balances and the enthalpy change of reaction in an expandable multi-phase matrix structure, which facilitates a detailed prediction of the main heat fluxes in the biochemical reactors. The methodology has been implemented in a plant-wide modelling methodology in order to facilitate the dynamic description of mass and heat throughout the plant. After validation with literature data, as illustrative examples of the capability of the methodology, two case studies have been described. In the first one, a predenitrification-nitrification dynamic process has been analysed, with the aim of demonstrating the easy integration of the methodology in any system. In the second case study, the simulation of a thermal model for an ATAD has shown the potential of the proposed methodology for analysing the effect of ventilation and influent characterization.


Assuntos
Reatores Biológicos , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Temperatura Alta , Termodinâmica
7.
Water Res ; 47(16): 6033-43, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938118

RESUMO

Seven mixed sewage sludges from different wastewater treatment plants, which have an anaerobic digester in operation, were evaluated in order to clarify the literature uncertainty with regard to the sewage sludge characterisation and biodegradability. Moreover, a methodology is provided to determine the Anaerobic Digestion Model No. 1 parameters, coefficients and initial state variables as well as a discussion about the accuracy of the first order solubilisation constant, which was obtained through biomethane potential test. The results of the biomethane potential tests showed ultimate methane potentials from 188 to 214 mL CH4 g(-1) CODfed, COD removals between 58 and 65% and two homogeneous groups for the first order solubilisation constant: (i) the lowest rate group from 0.23 to 0.35 day(-1) and (ii) the highest rate group from 0.27 to 0.43 day(-1). However, no statistically significant relationship between the ultimate methane potential or the disintegration constant and the sewage sludge characterisation was found. Next, a methodology based on the sludge characterisation before and after the biomethane potential test was developed to calculate the biodegradable fraction, the composite concentration and stoichiometric coefficients and the soluble COD of the sewage sludge; required parameters for the implementation of the Anaerobic Digestion Model No. 1. The comparison of the experimental and the simulation results proved the consistency of the developed methodology. Nevertheless, an underestimation of the first order solubilisation constant was detected when the experimental results were simulated with the solubilisation constant obtained from the linear regression experimental data fitting. The latter phenomenon could be related to the accumulation of intermediary compounds during the biomethane potential assay.


Assuntos
Modelos Teóricos , Esgotos/microbiologia , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...