Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun Health ; 11: 100192, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34589729

RESUMO

The maternal polyinosinic:polycytidylic acid (poly(I:C)) animal model is frequently used to study how maternal immune activation may impact neuro development in the offspring. Here, we present the first systematic review and meta-analysis on the effects of maternal poly(I:C) injection on immune mediators in the offspring and provide an openly accessible systematic map of the data including methodological characteristics. Pubmed and EMBASE were searched for relevant publications, yielding 45 unique papers that met inclusion criteria. We extracted data on immune outcomes and methodological characteristics, and assessed the risk of bias. The descriptive summary showed that most studies reported an absence of effect, with an equal number of studies reporting an increase or decrease in the immune mediator being studied. Meta-analysis showed increased IL-6 concentrations in the offspring of poly(I:C) exposed mothers. This effect appeared larger prenatally than post-weaning. Furthermore, poly(I:C) administration during mid-gestation was associated with higher IL-6 concentrations in the offspring. Maternal poly(I:C) induced changes in IL-1ß, Il-10 and TNF-α concentrations were small and could not be associated with age of offspring, gestational period or sampling location. Finally, quality of reporting of potential measures to minimize bias was low, which stresses the importance of adherence to publication guidelines. Since neurodevelopmental disorders in humans tend to be associated with lifelong changes in cytokine concentrations, the absence of these effects as identified in this systematic review may suggest that combining the model with other etiological factors in future studies may provide further insight in the mechanisms through which maternal immune activation affects neurodevelopment.

2.
J Nutr Biochem ; 73: 108223, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31665674

RESUMO

Replacing part of glucose with galactose in the post-weaning diet beneficially affects later life metabolic health in female mice. The liver is the main site of galactose metabolism, but the direct effects of this dietary intervention on the liver in the post-weaning period are not known. The aim of this study was to elucidate this. Weanling female mice (C57BL/6JRccHsd) were fed a starch containing diet with glucose (32 en%) monosaccharide (GLU), or a diet with glucose and galactose (1:1 both 16 en%) (GLU+GAL). Body weight, body composition, and food intake were determined weekly. After 3 weeks, mice were sacrificed, and serum and liver tissues were collected. Global hepatic mRNA expression was analyzed and hepatic triglyceride (TG) and glycogen contents were determined by enzymatic assays. Body weight and body composition were similar in both groups, despite higher food intake in mice on GLU+GAL diet. Hepatic TG content was lower in GLU+GAL-fed than GLU-fed females, while glycogen levels were unaffected. Analysis of global expression patterns of hepatic mRNA showed that mainly inflammation-related pathways were affected by the diet, which were predominantly downregulated in GLU+GAL-fed females compared to GLU-fed females. This reduction in inflammation in GLU+GAL-fed females was also reflected by decreased serum concentrations of acute phase protein Serum amyloid A 3. In conclusion, replacing part of glucose with galactose in the post-weaning diet reduces hepatic TG content and hepatic inflammation.


Assuntos
Dieta , Galactose/administração & dosagem , Glucose/administração & dosagem , Fígado/fisiologia , Animais , Composição Corporal , Peso Corporal , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Glicogênio/análise , Hepatite/prevenção & controle , Fígado/química , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Triglicerídeos/análise , Desmame
3.
Nutrients ; 11(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540385

RESUMO

Starches of low digestibility are associated with improved glucose metabolism. We hypothesise that a lowly digestible-starch diet (LDD) versus a highly digestible-starch diet (HDD) improves the capacity to oxidise starch, and that this is sex-dependent. Mice were fed a LDD or a HDD for 3 weeks directly after weaning. Body weight (BW), body composition (BC), and digestible energy intake (dEI) were determined weekly. At the end of the intervention period, whole-body energy expenditure (EE), respiratory exchange ratio (RER), hydrogen production, and the oxidation of an oral 13C-labelled starch bolus were measured by extended indirect calorimetry. Pancreatic amylase activity and total 13C hepatic enrichment were determined in females immediately before and 4 h after administration of the starch bolus. For both sexes, BW, BC, and basal EE and RER were not affected by the type of starch, but dEI and hydrogen production were increased by the LDD. Only in females, total carbohydrate oxidation and starch-derived glucose oxidation in response to the starch bolus were higher in LDD versus HDD mice; this was not accompanied by differences in amylase activity or hepatic partitioning of the 13C label. These results show that starch digestibility impacts glucose metabolism differently in females versus males.


Assuntos
Glicemia/metabolismo , Dieta , Amido/metabolismo , Desmame , Animais , Glicemia/química , Peso Corporal/fisiologia , Calorimetria Indireta , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Fatores Sexuais
4.
Sci Rep ; 9(1): 11507, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395916

RESUMO

Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O2 consumption and CO2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13CO2 and 12CO2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13CO2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13CO2 and 12CO2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.


Assuntos
Calorimetria Indireta/métodos , Dióxido de Carbono/análise , Ração Animal , Animais , Isótopos de Carbono/metabolismo , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Isótopos/análise , Camundongos , Obesidade/metabolismo , Oxirredução
5.
J Nutr ; 149(7): 1140-1148, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31076770

RESUMO

BACKGROUND: Duration of breastfeeding is positively associated with decreased adiposity and increased metabolic health in later life, which might be related to galactose. OBJECTIVE: The aim of this study was to investigate if partial replacement of glucose with galactose in the postweaning diet had a metabolic programming effect. METHODS: Male and female mice (C57BL/6JRccHsd) received an isocaloric diet (16 energy% fat; 64 energy% carbohydrates; 20 energy% protein) with either glucose (32 energy%) (GLU) or glucose + galactose (GLU + GAL, 16 energy% each) for 3 wk postweaning. Afterwards, all mice were switched to the same 40 energy% high-fat diet (HFD) for 9 wk to evaluate potential programming effects in an obesogenic environment. Data were analyzed within sex. RESULTS: Female body weight (-14%) and fat mass (-47%) were significantly lower at the end of the HFD period (both P < 0.001) among those fed GLU + GAL than among those fed GLU; effects in males were in line with these findings but nonsignificant. Food intake was affected in GLU + GAL-fed females (+8% on postweaning diet, -9% on HFD) compared with GLU-fed females, but not for hypothalamic transcript levels at endpoint. Also, in GLU + GAL-fed females, serum insulin concentrations (-48%, P  < 0.05) and the associated homeostasis model assessment of insulin resistance (HOMA-IR) were significantly lower ( P < 0.05) at endpoint, but there were no changes in pancreas morphology. In GLU + GAL-fed females, expression of insulin receptor substrate 2 (Irs2) (-27%, P  < 0.01 ; -44%, P  < 0.001) and the adipocyte size markers leptin (Lep) (-40%, P  < 0.05; -63% , P  < 0.05) and mesoderm-specific transcript homolog protein (Mest) (-80%, P < 0.05; -72%, P  < 0.05) was lower in gonadal and subcutaneous white adipose tissue (WAT), respectively. Expression of insulin receptor substrate1 (Irs1) (-24%, P  < 0.05) was only lower in subcutaneous WAT in GLU + GAL-fed females. CONCLUSIONS: Partial replacement of glucose with galactose, resulting in a 1:1 ratio mimicking lactose, in a 3-wk postweaning diet lowered body weight, adiposity, HOMA-IR, and expression of WAT insulin signaling in HFD-challenged female mice in later life. This suggests that prolonged galactose intake may improve metabolic and overall health in later life.


Assuntos
Adiposidade , Dieta Hiperlipídica/efeitos adversos , Galactose/administração & dosagem , Glucose/administração & dosagem , Fatores Sexuais , Desmame , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Nutrients ; 10(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453616

RESUMO

Starches of low and high digestibility have different metabolic effects. Here, we examined whether this gives differential metabolic programming when fed in the immediate post-weaning period. Chow-fed mice were time-mated, and their nests were standardized and cross-fostered at postnatal days 1⁻2. After postnatal week (PW) 3, individually housed female and male offspring were switched to a lowly-digestible (LDD) or highly-digestible starch diet (HDD) for three weeks. All of the mice received the same high-fat diet (HFD) for nine weeks thereafter. Energy and substrate metabolism and carbohydrate fermentation were studied at the end of the HDD/LDD and HFD periods by extended indirect calorimetry. Glucose tolerance (PW 11) and metabolic flexibility (PW14) were analyzed. Directly in response to the LDD versus the HDD, females showed smaller adipocytes with less crown-like structures in gonadal white adipose tissue, while males had a lower fat mass and higher whole body fat oxidation levels. Both LDD-fed females and males showed an enlarged intestinal tract. Although most of the phenotypical differences disappeared in adulthood in both sexes, females exposed to LDD versus HDD in the early post-weaning period showed improved metabolic flexibility in adulthood. Cumulatively, these results suggest that the type of starch introduced after weaning could, at least in females, program later-life health.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Dieta/efeitos adversos , Digestão/fisiologia , Amido/efeitos adversos , Animais , Glicemia/metabolismo , Dieta/métodos , Dieta Hiperlipídica , Feminino , Masculino , Camundongos , Desmame
7.
Sci Rep ; 8(1): 15351, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337551

RESUMO

Real time in vivo methods are needed to better understand the interplay between diet and the gastrointestinal microbiota. Therefore, a rodent indirect calorimetry system was equipped with hydrogen (H2) and methane (CH4) sensors. H2 production was readily detected in C57BL/6J mice and followed a circadian rhythm. H2 production was increased within 12 hours after first exposure to a lowly-digestible starch diet (LDD) compared to a highly-digestible starch diet (HDD). Marked differences were observed in the faecal microbiota of animals fed the LDD and HDD diets. H2 was identified as a key variable explaining the variation in microbial communities, with specific taxa (including Bacteroides and Parasutterella) correlating with H2 production upon LDD-feeding. CH4 production was undetectable which was in line with absence of CH4 producers in the gut. We conclude that real-time in vivo monitoring of gases provides a non-invasive time-resolved system to explore the interplay between nutrition and gut microbes in a mouse model, and demonstrates potential for translation to other animal models and human studies.


Assuntos
Adaptação Fisiológica , Carboidratos da Dieta/administração & dosagem , Fezes/microbiologia , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Hidrogênio/análise , Metano/análise , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Mol Nutr Food Res ; 62(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034600

RESUMO

SCOPE: Metabolic programming can occur not only in the perinatal period, but also post-weaning. This study aims to assess whether fructose, in comparison to glucose, in the post-weaning diet programs body weight, adiposity, glucose tolerance, metabolic flexibility, and health at adult age. METHODS AND RESULTS: Three-week-old male and female C57BL6/JRccHsd mice are given an intervention diet with 32 energy percent (en%) glucose or fructose for only 3 weeks. Next, all animals are switched to the same 40 en% high fat diet for 9 weeks. Neither body weight nor adiposity differs significantly between the animals fed with glucose or fructose diets at any point during the study in both sexes. Glucose tolerance in adulthood is not affected by the post-weaning diet, nor are activity, energy expenditure, and metabolic flexibility, as measured by indirect calorimetry. At the end of the study, only in females fasting serum insulin levels and HOMA-IR index are lower in post-weaning fructose versus glucose diet (p = 0.02), without differences in pancreatic ß-cell mass. CONCLUSIONS: Our present findings indicate no adverse programming of body weight, adiposity, glucose tolerance, and metabolic flexibility by dietary (solid) fructose in comparison to glucose in the post-weaning diet in mice.


Assuntos
Adiposidade/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Frutose/efeitos adversos , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Frutose/farmacologia , Glucose/efeitos adversos , Glucose/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...