Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864116

RESUMO

BACKGROUND: Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS: We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS: We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION: Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.

2.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37328936

RESUMO

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Assuntos
Vesículas Extracelulares , Cinesinas , Cinesinas/metabolismo , Chaperonina com TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos , Lipídeos
3.
Allergy ; 77(11): 3249-3266, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35781885

RESUMO

Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).


Assuntos
Aterosclerose , Rinite Alérgica , Humanos , Citocinas/metabolismo , Células Th2 , Rinite Alérgica/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Imunoglobulina E , Inflamação/metabolismo
4.
Cells ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34831399

RESUMO

Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment-cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR's role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.


Assuntos
Homeostase , Inflamação/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/patologia , Animais , Humanos , Sistema Imunitário/metabolismo , Ligantes , Pele/imunologia
6.
Methods Mol Biol ; 2346: 91-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930980

RESUMO

Exosomes are extracellular vesicles (EVs) containing different biomolecules with biological activity, such as proteins, miRNA, long noncoding RNA, and DNA. EVs are efficient platforms for intercellular communication, especially during immune responses, but also in some pathological contexts, such as tumor cell growth. The precise assessment of EV content is relevant for the selection of specific vesicles with specialized biological activities, whose content is hardly visualized due to their small size. We describe herein a protocol for the determination of the content of individual EVs through microscopy imaging and user-friendly analysis using TIRF microscopy.


Assuntos
DNA/análise , Exossomos/química , Proteínas/análise , RNA/análise , Comunicação Celular , DNA/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas/metabolismo , RNA/metabolismo
7.
J Invest Dermatol ; 141(6): 1522-1532.e3, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33181141

RESUMO

Allergic contact dermatitis, also known as contact hypersensitivity, is a frequent T-cell‒mediated inflammatory skin disease characterized by red, itchy, swollen, and cracked skin. It is caused by the direct contact with an allergen and/or irritant hapten. Galectin-1 (Gal-1) is a ß-galactoside‒binding lectin, which is highly expressed in several types of immune cells. The role of endogenous Gal-1 in contact hypersensitivity is not known. We found that Gal-1‒deficient mice display more sustained and prolonged skin inflammation than wild-type mice after oxazolone treatment. Gal-1‒deficient mice have increased CD8+ T cells and neutrophilic infiltration in the skin. After the sensitization phase, Gal-1‒depleted mice showed an increased frequency of central memory CD8+ T cells and IFN-γ secretion by CD8+ T cells. The absence of Gal-1 does not affect the migration of transferred CD4+ and CD8+ T cells from the blood to the lymph nodes or to the skin. The depletion of CD4+ T lymphocytes as well as adoptive transfer experiments demonstrated that endogenous expression of Gal-1 on CD8+ T lymphocytes exerts a major role in the control of contact hypersensitivity model. These data underscore the protective role of endogenous Gal-1 in CD8+ but not CD4+ T cells in the development of allergic contact dermatitis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Galectina 1/deficiência , Pele/patologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/metabolismo , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Feminino , Galectina 1/genética , Humanos , Masculino , Camundongos , Oxazolona/administração & dosagem , Oxazolona/imunologia , Pele/imunologia
8.
J Allergy Clin Immunol ; 145(1): 199-214.e11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605740

RESUMO

BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1ß, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1ß, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1ß stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1ß-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1ß/IL-17 axis.


Assuntos
Imunidade Adaptativa , Sistema y+L de Transporte de Aminoácidos/imunologia , Imunidade Inata , Transportador 1 de Aminoácidos Neutros Grandes/imunologia , Psoríase/imunologia , Pele/imunologia , Células Th17/imunologia , Sistema y+L de Transporte de Aminoácidos/genética , Animais , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Camundongos Transgênicos , Psoríase/genética , Psoríase/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/patologia , Células Th17/patologia
9.
Phytomedicine ; 23(12): 1301-1311, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765349

RESUMO

BACKGROUND: Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE: Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS: Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS: MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION: MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Olea/química , Triterpenos/farmacologia , Células 3T3-L1 , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Glucose/metabolismo , Camundongos , PPAR gama/genética , RNA/biossíntese , RNA/genética , Triglicerídeos/metabolismo , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...