Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124533, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820814

RESUMO

Antimicrobial resistance poses a significant challenge in modern medicine, affecting public health. Klebsiella pneumoniae infections compound this issue due to their broad range of infections and the emergence of multiple antibiotic resistance mechanisms. Efficient detection of its capsular serotypes is crucial for immediate patient treatment, epidemiological tracking and outbreak containment. Current methods have limitations that can delay interventions and increase the risk of morbidity and mortality. Raman spectroscopy is a promising alternative to identify capsular serotypes in hypermucoviscous K. pneumoniae isolates. It provides rapid and in situ measurements with minimal sample preparation. Moreover, its combination with machine learning tools demonstrates high accuracy and reproducibility. This study analyzed the viability of combining Raman spectroscopy with one-dimensional convolutional neural networks (1-D CNN) to classify four capsular serotypes of hypermucoviscous K. pneumoniae: K1, K2, K54 and K57. Our approach involved identifying the most relevant Raman features for classification to prevent overfitting in the training models. Simplifying the dataset to essential information maintains accuracy and reduces computational costs and training time. Capsular serotypes were classified with 96 % accuracy using less than 30 Raman features out of 2400 contained in each spectrum. To validate our methodology, we expanded the dataset to include both hypermucoviscous and non-mucoid isolates and distinguished between them. This resulted in an accuracy rate of 94 %. The results obtained have significant potential for practical healthcare applications, especially for enabling the prompt prescription of the appropriate antibiotic treatment against infections.


Assuntos
Cápsulas Bacterianas , Klebsiella pneumoniae , Análise Espectral Raman , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Análise Espectral Raman/métodos , Cápsulas Bacterianas/química , Sorogrupo , Redes Neurais de Computação , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/diagnóstico , Humanos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122270, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580749

RESUMO

One of the problems that most affect hospitals is infections by pathogenic microorganisms. Rapid identification and adequate, timely treatment can avoid fatal consequences and the development of antibiotic resistance, so it is crucial to use fast, reliable, and not too laborious techniques to obtain quick results. Raman spectroscopy has proven to be a powerful tool for molecular analysis, meeting these requirements better than traditional techniques. In this work, we have used Raman spectroscopy combined with machine learning algorithms to explore the automatic identification of eleven species of the genus Candida, the most common cause of fungal infections worldwide. The Raman spectra were obtained from more than 220 different measurements of dried drops from pure cultures of each Candida species using a Raman Confocal Microscope with a 532 nm laser excitation source. After developing a spectral preprocessing methodology, a study of the quality and variability of the measured spectra at the isolate and species level, and the spectral features contributing to inter-class variations, showed the potential to discriminate between those pathogenic yeasts. Several machine learning and deep learning algorithms were trained using hyperparameter optimization techniques to find the best possible classifier for this spectral data, in terms of accuracy and lowest possible overfitting. We found that a one-dimensional Convolutional Neural Network (1-D CNN) could achieve above 80 % overall accuracy for the eleven classes spectral dataset, with good generalization capabilities.


Assuntos
Candida , Análise Espectral Raman , Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
3.
Biosensors (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421145

RESUMO

Phytoplankton is a crucial component for the correct functioning of different ecosystems, climate regulation and carbon reduction. Being at least a quarter of the biomass of the world's vegetation, they produce approximately 50% of atmospheric O2 and remove nearly a third of the anthropogenic carbon released into the atmosphere through photosynthesis. In addition, they support directly or indirectly all the animals of the ocean and freshwater ecosystems, being the base of the food web. The importance of their measurement and identification has increased in the last years, becoming an essential consideration for marine management. The gold standard process used to identify and quantify phytoplankton is manual sample collection and microscopy-based identification, which is a tedious and time-consuming task and requires highly trained professionals. Microfluidic Lab-on-a-Chip technology represents a potential technical solution for environmental monitoring, for example, in situ quantifying toxic phytoplankton. Its main advantages are miniaturisation, portability, reduced reagent/sample consumption and cost reduction. In particular, photonic microfluidic chips that rely on optical sensing have emerged as powerful tools that can be used to identify and analyse phytoplankton with high specificity, sensitivity and throughput. In this review, we focus on recent advances in photonic microfluidic technologies for phytoplankton research. Different optical properties of phytoplankton, fabrication and sensing technologies will be reviewed. To conclude, current challenges and possible future directions will be discussed.


Assuntos
Microfluídica , Fitoplâncton , Animais , Ecossistema , Tecnologia , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...