Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 2): 159458, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265622

RESUMO

The irrigation systems of the Ebro valley can lead to high N2O emissions. The effects that crop diversification, such as double-cropping in combination with conservation tillage and different N fertilizer ratios, has on soil N2O emissions have not been extensively studied in this region. The goal of this research was to measure N2O soil emissions and determine the tillage practices and N fertilization rates that provide the lowest emissions when combined with double-cropping systems. The work compared monocropping maize (MC) versus legume-maize double-cropping (DC) with two tillage systems (conventional tillage, CT; and no-tillage, NT), and three mineral N fertilization rates (zero, medium and high). Pea for grain (2019), vetch for green manure (2020), and vetch for forage (2021) were the legumes employed. The N2O emissions ranged from 0 to 15.5 mg N2O-N m-2 d-1 and were concentrated in the fertilization periods. Soil temperature and water filled pore space (WFPS) content significantly influenced soil N2O emissions. For both cropping systems, the conditions with the highest N2O emissions were soil temperatures above 20 °C and a WFPS of 50-60 %. The use of legumes facilitated reduced N fertilization in DC without affecting crop yield and led to reduced N2O emissions in this cropping system. DC reduced the emission factor (EF), which in all cases was lower than the default IPCC EF (1 %). With DC, a medium N fertilization rate produced similar yields to the high rate commonly applied by farmers, and also entailed lower N2O emissions. The no-tillage system, although producing higher levels of N2O, achieved lower yield-scaled N2O emissions due to greater crop yields. This work underlines the advantages of using double-cropping no-tillage systems combined with medium rates of N fertilization to reduce soil N2O emissions.


Assuntos
Nitrogênio , Solo , Óxido Nitroso/análise , Agricultura , Água , Fertilização
2.
Toxins (Basel) ; 14(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136558

RESUMO

Agronomic factors can affect mycotoxin contamination of maize, one of the most produced cereals. Maize is usually harvested at 18% moisture, but it is not microbiologically stable until it reaches 14% moisture at the drying plants. We studied how three agronomic factors (crop diversification, tillage system and nitrogen fertilization rate) can affect fungal and mycotoxin contamination (deoxynivalenol and fumonisins B1 and B2) in maize at harvest. In addition, changes in maize during a simulated harvest-till-drying period were studied. DON content at harvest was higher for maize under intensive tillage than using direct drilling (2695 and 474 µg kg-1, respectively). We found two reasons for this: (i) soil crusting in intensive tillage plots caused the formation of pools of water that created high air humidity conditions, favouring the development of DON-producing moulds; (ii) the population of Lumbricus terrestris, an earthworm that would indirectly minimize fungal infection and mycotoxin production on maize kernels, is reduced in intensive tillage plots. Therefore, direct drilling is a better approach than intensive tillage for both preventing DON contamination and preserving soil quality. Concerning the simulated harvest-till-drying period, DON significantly increased between storage days 0 and 5. Water activity dropped on the 4th day, below the threshold for DON production (around 0.91). From our perspective, this study constitutes a step forward towards understanding the relationships between agronomic factors and mycotoxin contamination in maize, and towards improving food safety.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Contaminação de Alimentos/análise , Micotoxinas/análise , Nitrogênio , Solo , Água , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA