Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21260, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37885721

RESUMO

This work provides a description of the aggregation equilibria of ibuprofen acid in deionized water at temperatures between 20 and 40 °C in the 0.1-20.1 ppm concentration range. For this goal, we have made use of UV-Visible spectroscopy. A calculation algorithm was developed to obtain the aggregate orders and thermodynamic parameters from the experimental absorbance values. Monomeric ibuprofen acid was found to be absent in water solutions. In addition to the dimer, two aggregates formed by 32 and 128 monomeric units were found to co-exist in solution at the highest concentration tested. A critical micelle concentration of 7.8 ppm was estimated for this system. The appearance of the first aggregate occurs when the pH drops below the pKa value, which was determined to be 4.62. At higher ibuprofen concentrations, a sudden jump in the electrical conductivity coincides with the onset of formation of the second aggregate. A varied menu of alternatives is offered with respect to the calibration curve of ibuprofen in water, though the linear calibration of ibuprofen concentration with absorbance might be reasonably performed at 224 nm. Finally, the dissolution rate of the commercial ibuprofen used in this work was found to obey the Noyes-Whitney first order equation.

2.
ACS Omega ; 5(46): 29801-29815, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251415

RESUMO

As in our previous work, most attempts to study the self-aggregation of methylene blue (MB) in water have been limited to the dimer. In the present work, we have analyzed the self-aggregation of MB in water beyond the dimeric form. For this purpose, the visible light absorption spectra of a large number of aqueous solutions of MB (1.1 × 10-6 to 3.4 × 10-3 M) and NaCl (0.0-0.15 M) at different temperatures (282-333 K) have been fed to a mathematical routine in order to determine the potential existence of a unique higher-order aggregate without any preconception about the aggregation order or about the need of counterions, such as chloride, for compensating the positive charge of the aggregates. Contrary to the common belief that the trimer is the dominant aggregate at high MB concentration, to our surprise we found that the tetramer acting alone, and without any counterion, is the higher-order aggregate that yields the best fitting to all the experimental absorbance spectra, with a very low average relative error of 0.04 ± 0.34%. Also contrary to previous assumptions, it has emerged quite evidently that this aggregate is present in the solution at MB concentrations below 3.4 × 10-5 M (11 ppm), though to a rather low extent. This has brought the need for the recalculation of the visible light absorption spectrum and the thermodynamic parameters for the dimer, which along with those for the tetramer are the main contributions of the present work.

3.
Phys Chem Chem Phys ; 19(25): 16413-16425, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28631791

RESUMO

In a previous work by the authors (A. Fernández-Pérez el al., Room temperature sintering of polar ZnO nanosheets: I-evidence, 2017, DOI: 10.1039/C7CP02306E), polar ZnO nanosheets were stored at room temperature under different atmospheres and the evolution of their textural and crystal properties during storage was followed. It was found that the specific surface area of the nanosheets drastically decreased during storage, with a loss of up to 75%. The ZnO crystals increased in size mainly through the partial merging of their polar surfaces at the expense of narrow mesoporosity, in a process triggered by the action of moisture, oxygen and, in their absence, by light. In the present work, a set of spectroscopic techniques (FTIR, Raman and XPS) has been used in an attempt to unravel the mechanism behind this spontaneous sintering process. The mechanism starts with the molecular adsorption of water, which takes place on Zn atoms close to oxygen vacancies on the (100) surface, where H2O dissociates to form two hydroxyl groups and to heal one oxygen vacancy. This process triggers the room temperature migration of Zn interstitials towards the outer surface of the polar region. What were previously interstitial Zn atoms now gradually occupy the mesopores, with interstitial oxygen being used to build up the O sublattice until total occupancy of the narrow mesoporosity is achieved.

4.
Phys Chem Chem Phys ; 19(25): 16406-16412, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28630962

RESUMO

Polar ZnO nanosheets of a high specific surface area (∼120 m2 g-1) were subjected to storage under different atmospheres at room temperature and analyzed for changes in their textural and crystal properties. During their storage under laboratory conditions (in closed transparent polypropylene vials kept under the light of the laboratory on worktop tables) the nanosheets lost up to 75% of their specific surface area in approximately two months, with most of the loss occurring during the first two weeks. The narrow mesoporosity (∼5 nm pore size) became filled with ZnO during the process. No loss or gain in weight was detected. The loss of specific surface area took place under all of the atmospheres assayed, in the following order: moist air (with or without light) > moist CO2-free atmosphere (with or without light and/or oxygen) > dry CO2-free oxygen-containing atmosphere (with or without light) > dry inert atmosphere (with light) > dry inert atmosphere (in the dark). During storage the ZnO crystals grew mainly by the partial merging of their polar surfaces in a process triggered by the action of moisture, oxygen and, in the absence of these two agents, light. The mechanism of this intriguing phenomenon will be analyzed in detail in the second part of this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...