Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 79(8): 3173-9, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17367116

RESUMO

This report addresses the task of calibrating an optical sensor for oxygen determination. Detailed analyses of the functional dependences from our measurement system results have been carried out with the additional aim of temperature compensation. As a result, an empirical calibration function has been successfully derived for the luminescent quenching-based oxygen sensor included in a self-designed portable instrument. This function also compensates for the temperature influence on the quenching luminescence process in the range from 0 to 45 degrees C. Moreover, the calibration procedure is extremely simple because only a single standard is needed. In fact, the oxygen measurement system can be calibrated with exposure to an open air atmosphere, and therefore, neither laboratory standards nor trained personnel are required. The method has been applied to a set of 11 units of the mentioned sensor (up to 24% oxygen concentration) giving an overall deviation between our calibrated system results and the laboratory standards of 0.3% oxygen concentration (calculated with 95% confidence level). The proposed calibration function has shown itself to be applicable for different sensing film thicknesses and luminophore concentrations using the same fittings parameter. Additionally, this function has been successfully applied to other oxygen dyes. Good agreement has also been found when the performance of the instrument was compared to a commercially available portable instrument based on an electrochemical sensor. We believe that this work could be an interesting finding for spreading the use of optical sensors for atmospheric oxygen determination in commercial measurement equipment for different purposes in confined working atmospheres, such as mines, undergrounds, warehouses, vehicles, and ships.

2.
Anal Chem ; 77(14): 4459-66, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16013860

RESUMO

A new optical absorption-based disposable sensor for nitrate is described. The nitrate-sensitive element is a bicyclic cyclophane receptor next to a suitable pH-sensitive lipophilic dye immobilized in a plasticized polymeric membrane. The rigid amide-based receptor with C3 symmetry controls the anion selectivity pattern of the optical element. The optical selectivity coefficients obtained for nitrate over a variety of naturally occurring anions in natural waters meet the requirements for the determination of nitrate in waters. The disposable sensor responds to nitrate rapidly-the typical response time is 5 min-and reversibly over a wide dynamic range (26 microM-63 mM) with sensor-to-sensor reproducibility (relative standard deviation, RSD, 3.68%, as log aNO3-, at the medium level of the range and RSD 1.39% for repeated measurements with the same sensor). The performance of the optical disposable sensor was tested for the analysis of nitrate in different types of natural waters (river, well, spring), validating results against a reference procedure. The proposed method is quick, inexpensive, selective, and sensitive and uses only conventional instrumentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...