Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 120: 102351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470606

RESUMO

Collecting methods generally used to determine cell abundances of toxic benthic dinoflagellates (BHAB) use cells dislodged from either macrophytes or artificial substrates. This article compares the advantages of the macrophyte and artificial substrate methods and discusses which method is more appropriate for use in monitoring programs that focus on toxic BHAB species identification and quantification. The concept of benthic dinoflagellate "preference" for specific macrophytes was also reviewed. Examination of data from 75 field studies showed macrophytes with higher surface area per unit biomass harbored higher concentrations of Gambierdiscus cells. There was no definitive evidence that cells were actively selecting one macrophyte over another. This observation supports the use of artificial substrates (AS) as a means of assessing cell abundances in complex habitats because cell counts are normalized to a standardized surface area, not macrophyte biomass. The artificial substrate method represents the most robust approach, currently available, for collecting toxic, benthic dinoflagellates for a cell-based early warning system.


Assuntos
Dinoflagellida , Ecossistema , Biomassa
2.
Harmful Algae ; 117: 102271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944952

RESUMO

The study of epibenthic assemblages of harmful dinoflagellates (BHABs) is commonly conducted in shallow infralittoral zones (0 - 5 m) and are seldom investigated at deeper waters. In this study, the distribution with depth of five BHAB genera (Gambierdiscus, Ostreopsis, Prorocentrum, Coolia and Amphidinium) was investigated in the south of El Hierro island (Canary Islands, Spain). Sampling involved the use of a standardized artificial substrate deployed at three depth levels (5, 10 and 20 m) that were visited at three different times throughout one year. The influence of three depth-correlated abiotic parameters, i.e. light, water motion and water temperature, on the vertical and seasonal distribution of the BHAB assemblage was also assessed. Two vertical distribution patterns were observed consistently through time: cell abundances of Ostreopsis and Coolia decreased from 5 to 20 m while those of Gambierdiscus, Prorocentrum and Amphidinium showed the reverse pattern, although significant differences were only observed between 5 and 10 - 20 m depth. In April, two members of the latter group, Gambierdiscus and Amphidinium, were even absent at 5 m depth. The recorded environmental parameters explained a high percentage of the observed distribution. In particular, model selection statistical approaches indicated that water motion was the most significant parameter. An analysis of Gambierdiscus at species level revealed the co-occurrence of four species in the study area: G. australes, G. belizeanus, G. caribaeus and G. excentricus. The species G. excentricus, reported here for the first time in El Hierro, showed a more restricted vertical and seasonal distribution than the other species, which may explain not being detected in previous studies in the area. The results obtained in this study highlight the importance of considering a wider depth range and different seasons of the year when investigating the ecology of BHABs and assessing their risk and impacts on human health and the environment. Only then, efficient monitoring programs will be implemented in the Canary Islands and globally in areas affected by these events.


Assuntos
Dinoflagellida , Humanos , Espanha , Temperatura , Água
3.
Harmful Algae ; 87: 101634, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31349892

RESUMO

The suitability of the 'artificial substrate' method, i.e. standardized surfaces of fiberglass screens, for the quantification of four benthic harmful algal bloom (BHAB) dinoflagellates (Gambierdiscus, Ostreopsis, Prorocentrum and Coolia) was tested relative to estimates from natural macroalgal substrates. Sampling took place in a variety of intertidal and subtidal coastal habitats under different water motion conditions, at depths from 1 to 7 m, in two archipelagos of the Macaronesia region: The Canary Islands and Cape Verde. An immersion time of 24 h was sufficient to adequately estimate dinoflagellate abundances. Seven replicates were established as the ideal replication level, considering both reproducibility and sampling effort. In most cases, cell abundances of the four dinoflagellate genera showed lower variability on artificial substrates than on macroalgae, leading to more reliable estimates of abundances. The ratio of mean cell abundances on artificial substrates to mean cell abundances on macroalgae highly varied among sampling sites for each genus. This was especially true for Ostreopsis and Coolia. Thus, given the potentially harmful nature of benthic dinoflagellates, the transformation of abundances expressed as cells g-1 of macroalgae to abundances expressed as cells cm-2 is risky, and it should not be attempted in monitoring and management programs of harmful microalgae. In summary, results of this study support the use of artificial substrates in monitoring programs of BHAB dinoflagellates, while the risks of using macroalgae are stressed.


Assuntos
Dinoflagellida , Microalgas , Proliferação Nociva de Algas , Reprodutibilidade dos Testes , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...