Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 615: 121492, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35063592

RESUMO

One of the main challenges when developing a spray dried formulation of an inhalable enzyme is the generation of a safe and effective aerosol, able to reach the lungs, while preserving protein function and structural levels of the biologic. Hence, an appropriate excipient selection based on enzyme stabilization, inhalation precedence and spray drying (SD) process development is required to meet this balance. Herein, an integrated methodology is presented to expedite the selection of the best dry powder inhaler excipient system to formulate three model enzymes of increasing molecular mass and structural complexity belonging to the oxidoreductase class and often implicated in oxidative stress: superoxide dismutase, glucose oxidase and catalase. Three non-reducing sugars and four amino acids were screened using High Throughput Isothermal Denaturation Fluorimetry (HT-ITDF) for a stabilizing effect on the enzymes quaternary structure. For each tested enzyme, the sugar and amino acid showcasing a stabilizing effect, were spray dried together at fixed process conditions for three different ratios, to assess which formulation would then display the best aerodynamic performance. After SD, using the selected conditions, all powders displayed 65-85% of fine particle fraction (FPF) whilst each enzyme kept the oligomeric state. The present integrated methodology proved to be successful, allowing to narrow down 36 potential formulations (three sugars × four amino acids × three ratios) to only one for each enzyme, within few hours, while requiring a µg range of sample amount.


Assuntos
Inaladores de Pó Seco , Administração por Inalação , Aerossóis , Tamanho da Partícula , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA