Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 295: 105088, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237666

RESUMO

Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.


Assuntos
Leishmania braziliensis , Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Leishmania infantum/metabolismo , Proteoma/metabolismo , Temperatura , Leishmaniose Cutânea/parasitologia , Mamíferos
2.
J Shoulder Elbow Surg ; 30(6): e261-e275, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32919047

RESUMO

BACKGROUND: Rotator cuff (RC) disorders involve a spectrum of shoulder conditions from early tendinopathy to full-thickness tears leading to impaired shoulder function and pain. The pathology of RC disorder is, nonetheless, still largely unknown. Our hypothesis is that a supraspinatus (SS) tendon tear leads to sustained inflammatory changes of the SS muscle along with fatty infiltration and muscle degeneration, which are threshold markers for poor RC muscle function. The aim of this study was to determine the extent of this muscle inflammation in conjunction with lipid accumulation and fibrosis in RC tear conditions. METHODS: We used proteomics, histology, electrochemiluminescence immunoassay, and quantitative polymerase chain reaction analyses to evaluate inflammatory and degenerative markers and fatty infiltration in biopsies from 22 patients undergoing surgery with repair of a full-thickness SS tendon tear. RESULTS: Bioinformatic analysis showed that proteins involved in innate immunity, extracellular matrix organization, and lipid metabolism were among the most upregulated, whereas mitochondrial electronic transport chain along with muscle fiber function was among the most downregulated. Histologic analysis confirmed changes in muscle fiber organization and the presence of inflammation and fatty infiltration. Inflammation appeared to be driven by a high number of infiltrating macrophages, accompanied by elevated matrix metalloprotease levels and changes in transforming growth factor-ß and cytokine levels in the SS compared with the deltoid muscle. CONCLUSIONS: We demonstrated massive SS muscle inflammation after the tendon tear combined with fatty infiltration and degeneration. The regulation of tissue repair is thus extremely complex, and it may have opposite effects at different time points of healing. Inhibition or stimulation of muscle inflammation may be a potential target to enhance the outcome of the repaired torn RC.


Assuntos
Lesões do Manguito Rotador , Tendinopatia , Humanos , Atrofia Muscular/patologia , Manguito Rotador/patologia , Lesões do Manguito Rotador/patologia , Lesões do Manguito Rotador/cirurgia , Ruptura/patologia
3.
Mol Omics ; 16(5): 407-424, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32724945

RESUMO

Protein glycosylation is a co- and post-translational modification that, in Leishmania parasites, plays key roles in vector-parasite-vertebrate host interaction. In the mammalian host, Leishmania protein glycosylation is involved in virulence, host cell invasion, and immune evasion and modulation. The Leishmania glycocalyx is composed by a dense array of glycoconjugates including lipophosphoglycan, glycoinositolphospholipids, glycoproteins and proteophosphoglycans which varies in composition between Leishmania species and developmental stages. The current knowledge on Leishmania protein glycosylation is quite limited. The development of novel analytical tools to characterize the Leishmania glycoproteome and the expanding toolbox to modulate the parasite glycocode will help in deciphering the processes involved in Leishmania-host interaction. This review will recapitulate the current knowledge of Leishmania protein glycosylation, and glycan structures reported, and the potential application of mass spectrometry-based analysis for system-wide Leishmania glycoproteome and glycome analysis.


Assuntos
Leishmania/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Glicosilação , Humanos , Leishmaniose/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...