Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(33): 19705-19715, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35811566

RESUMO

Understanding the plasmonic coupling between a set of metallic nanoparticles (NPs) in a 2D array, and how a substrate affects such coupling, is fundamental for the development of optimized optoelectronic structures. Here, a simple semi-analytical procedure based on discrete dipole approximation (DDA) is reported to simulate the far-field and near-field properties of arrays of NPs, considering the coupling between particles, and the effect of the presence of a semiconductor substrate based on the image dipole approach. The method is validated for Ag NP dimers and single Ag NPs on a gallium nitride (GaN) substrate, a semiconductor widely used in optical devices, by comparison with the results obtained by the finite element method (FEM), indicating a good agreement in the weak coupling regime. Next, the method is applied to square and random arrays of Ag NPs on a GaN substrate. The increase in the surface density of NPs on a GaN substrate mainly results in a redshift of the dipolar resonance frequency and an increase in the near-field enhancement. This model, based on a single dipole approach, grants very low computational times, representing an advantage to predict the optical properties of large NP arrays on a semiconductor substrate for different applications.

2.
ACS Appl Mater Interfaces ; 13(23): 27713-27725, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34086435

RESUMO

Several optoelectronic issues, such as poor optical absorption and recombination, limit the power conversion efficiency of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. To mitigate recombination losses, two combined strategies were implemented: a potassium fluoride (KF) post-deposition treatment (PDT) and a rear interface passivation strategy based on an aluminum oxide (Al2O3) point contact structure. The simultaneous implementation of both strategies is reported for the first time on ultrathin CIGS devices. Electrical measurements and 1D simulations demonstrate that in specific conditions, devices with only KF-PDT may outperform rear interface passivation based devices. By combining KF-PDT and rear interface passivation, an enhancement in an open-circuit voltage of 178 mV is reached over devices that have a rear passivation only, and of 85 mV over devices with only a KF-PDT process. Time-Resolved Photoluminescence measurements showed the beneficial effects of combining KF-PDT and the rear interface passivation at decreasing recombination losses in the studied devices, enhancing charge carrier lifetime. X-ray photoelectron spectroscopy measurements indicate the presence of an In and Se-rich layer that we linked to be a KInSe2 layer. Our results suggest that when bulk and front interface recombination values are very high, they dominate, and individual passivation strategies work poorly. Hence, this work shows that for ultrathin devices, passivation mitigation strategies need to be implemented in tandem.

4.
Langmuir ; 26(6): 4339-45, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20214396

RESUMO

Fullerenes (C(60)) with attached aliphatic chains are shown to form fluid bilayer structures that are distinguished by very characteristic and well-resolved X-ray diffraction patterns. Since, in addition, we vary systematically the number and length of the chains, detailed understanding of the structures can be achieved. To make the analysis transparent, simple boxlike electronic density profile models are proposed to explain the relative intensity of the several Bragg peaks present in the X-ray patterns. The models allow detailed characterization of the molecular organization. The molecules arrange themselves in bilayers with their long axis on average perpendicular to the plane of the layers. Considering the bilayers composed of three sections with different electronic density, the C(60) heads occupy a fixed length of approximately 17 A, corresponding to almost no interdigitation, the connector section around 4 A, and the carbon chains' perpendicular length depends on the number and length of the chains. The analysis reveals that reducing the number of carbons per chain (from 20 to 16) results in a shorter unit cell, while reducing the number of chains (from 3 to 2) results in a shorter but also slightly thinner unit cell, in agreement with known molecular packing volumes.

5.
Langmuir ; 24(23): 13677-82, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18980347

RESUMO

We report on the quantitative analysis of scanning transmission X-ray microscopy (STXM) images of gas-filled, poly(vinyl alcohol) (PVA)-based microballoons (MB) in a water environment. A model for the transmitted intensity is proposed on the basis of a perfect spherical shell stabilizing the microballoon. An extension of this model to take into account the deformation of the MBs is also presented. Taking into consideration a density gradient of the shell and the STXM resolution, we were able to explain very precisely two types of experimental STXM profiles observed on gas-filled MBs. This enables the detailed characterization of MB properties such as radius and wall thickness and the determination of their wall density with unprecedented high resolution.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microesferas , Álcool de Polivinil/análise , Gases/análise , Modelos Químicos , Tamanho da Partícula , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...