Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17624, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271238

RESUMO

This research characterizes key metabolites in the leaf from Citronella gongonha Martius (Mart.) Howard (Cardiopteridaceae). All metabolites were assessed in intact leaf tissue by proton (1H) high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy integrated with the principal component analysis (PCA) to depict molecular association with the seasonal change. The major 'known unknown' metabolites detected in 1H HR-MAS NMR were derivatives of flavonoid, polyphenolic and monoterpenoid compounds such as kaempferol-3-O-dihexoside, caffeoyl glucoside (2), 3-O-caffeoylquinic acid (3), 5-O-caffeoylquinic acid (4), kingiside (5), 8-epi-kingisidic acid (6), (7α)-7-O-methylmorroniside (7), (7ß)-7-O-methylmorroniside (8) and alpigenoside (9) together with the universally occurring sucrose (10), α-glucoses (11, 12), alanine (13), and fatty (linolenic) acid (14). Several of the major metabolites (1, 2-9) were additionally confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). In regard with the PCA results, metabolites 1, 2-9 and 14 were influenced by seasonal variation and/or from further (a) biotic environmental conditions. The findings in this work indicate that C. gongonha Mart. is an effective medicinal plant by preserving particularly compounds 2, 3-9 in abundant amounts. Because of close susceptibility with seasonal shift and ecological trends, further longitudinal studies are needed to realize the physiology and mechanism involved in the production of these and new metabolites in this plant under controlled conditions. Also, future studies are recommended to classify different epimers, especially of the phenolics and monoterpenoids in the given plant.


Assuntos
Cymbopogon , Magnoliopsida , Quempferóis/metabolismo , Prótons , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Monoterpenos/análise , Alanina/metabolismo , Sacarose/metabolismo , Glucosídeos/metabolismo
2.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30291117

RESUMO

In nature and man-made environments, microorganisms reside in mixed-species biofilms, in which the growth and metabolism of an organism are different from these behaviors in single-species biofilms. Pathogenic microorganisms may be protected against adverse treatments in mixed-species biofilms, leading to health risk for humans. Here, we developed two mixed five-species biofilms that included one or the other of the foodborne pathogens Listeria monocytogenes and Staphylococcus aureus The five species, including the pathogen, were isolated from a single food-processing environmental sample, thus mimicking the environmental community. In mature mixed five-species biofilms on stainless steel, the two pathogens remained at a constant level of ∼105 CFU/cm2 The mixed five-species biofilms as well as the pathogens in monospecies biofilms were exposed to biocides to determine any pathogen-protective effect of the mixed biofilm. Both pathogens and their associate microbial communities were reduced by peracetic acid treatments. S. aureus decreased by 4.6 log cycles in monospecies biofilms, but the pathogen was protected in the five-species biofilm and decreased by only 1.1 log cycles. Sessile cells of L. monocytogenes were affected to the same extent when in a monobiofilm or as a member of the mixed-species biofilm, decreasing by 3 log cycles when exposed to 0.0375% peracetic acid. When the pathogen was exchanged in each associated microbial community, S. aureus was eradicated, while there was no significant effect of the biocide on L. monocytogenes or the mixed community. This indicates that particular members or associations in the community offered the protective effect. Further studies are needed to clarify the mechanisms of biocide protection and to identify the species playing the protective role in microbial communities of biofilms.IMPORTANCE This study demonstrates that foodborne pathogens can be established in mixed-species biofilms and that this can protect them from biocide action. The protection is not due to specific characteristics of the pathogen, here S. aureus and L. monocytogenes, but likely caused by specific members or associations in the mixed-species biofilm. Biocide treatment and resistance are a challenge for many industries, and biocide efficacy should be tested on microorganisms growing in biofilms, preferably mixed systems, mimicking the application environment.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/isolamento & purificação , Testes de Sensibilidade Microbiana , Ácido Peracético/farmacologia , RNA Ribossômico 16S/genética , RNA Ribossômico 28S/genética , Aço Inoxidável , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
3.
J Dairy Sci ; 98(6): 3613-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841971

RESUMO

The objectives of the present study were to evaluate (1) the capacity of the microalga Prototheca zopfii isolated from subclinical bovine mastitis cases to form biofilms; and (2) the resistance of these isolates to sanitizing agents. Ten isolates of P. zopfii from cows with subclinical mastitis (somatic cell count>200×10(3) cells/mL), distributed in 5 dairy farms, were evaluated for their capacity to form biofilms in polystyrene microplate assays and stainless steel coupons, at 25°C and 37°C±1°C. Prototheca zopfii were isolated from milk samples via microbiological culture and analyzed by 18S rRNA gene sequencing. Biofilm formation on the coupons was observed by scanning electron microscopy. The resistance to sanitizing agents was assessed using the biofilm-forming P. zopfii isolates in stainless steel coupon assays, which were subjected to 3 sanitizers: peracetic acid, sodium hypochlorite, and iodine solution. To evaluate resistance to the sanitizers, the minimum inhibitory concentration (MIC) technique was performed using decreasing concentrations of the sanitizing agents (20, 10, 5, 2.5, 1.25, 0.625, 0.312, 0.156, 0.078, 0.039, and 0.019 g/L). After inoculating the isolates, all concentrations were evaluated at 3 distinct incubation periods (24, 48, and 72 h) to assess the effect of incubation time on the MIC. Using the polystyrene microplate assays, 1 isolate showed weak biofilm production, 5 moderate, and 4 strong, when incubated at 25°C±1. For isolates incubated at 37°C±1, 6 showed weak biofilm production and 4 moderate. All P. zopfii isolates (n=10) had the capacity to form biofilms on stainless steel coupons. The longer the incubation period of the P. zopfii isolates at different dilutions, the greater the concentrations of sanitizer needed to prevent growth of the microalgae under the tested conditions. We detected a significant effect of sanitizer and time of incubation (24, 48, and 72 h) on MIC values against P. zopfii isolates. The isolates were sensitive in vitro to peracetic acid (MIC90≥0.019 g/L), sodium hypochlorite (MIC90≥0.312 g/L), and iodine solution (MIC90≥0.625 g/L), after 24 h of incubation (where MIC90=concentration needed to inhibit 90% of isolates). Of the tested sanitizers, peracetic acid had the greatest efficiency against P. zopfii. We conclude that P. zopfii isolates are capable of biofilm production, which may contribute to their persistence in a milking and dairy environment.


Assuntos
Desinfetantes/farmacologia , Mastite Bovina/microbiologia , Prototheca/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , Bovinos , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Prototheca/genética , RNA Bacteriano/genética , RNA Ribossômico 18S/genética , Hipoclorito de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...