Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(22): e2307536, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126666

RESUMO

Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.


Assuntos
Materiais Biocompatíveis , Compostos Bicíclicos Heterocíclicos com Pontes , Condutividade Elétrica , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Materiais Biocompatíveis/química , Poliestirenos/química , Engenharia de Proteínas/métodos , Íons , Eletrônica
2.
ACS Appl Mater Interfaces ; 13(16): 19193-19199, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871260

RESUMO

Bio-based plastics that can supplant petroleum-derived materials are necessary to meet the future demands of sustainability in the life cycle of plastic materials. While there are significant efforts to develop protein-based plastic materials for commercial use, their application is limited by poor processability and limitations in mechanical performance. Here, we present a bovine serum albumin (BSA)-based resin for stereolithographic apparatus (SLA) 3D printing that affords bioplastic objects with shape-memory behavior. We demonstrate that the native conformation of these globular proteins is largely retained in the 3D-printed constructs and that each protein molecule possesses a "stored length" that could be revealed during mechanical deformation (extension or compression) of the 3D bioplastic objects. While the plastically deformed objects could retain this state for an indefinite period of time, heating the object or submerging in water allowed it to return to its original 3D-printed shape.


Assuntos
Fenômenos Mecânicos , Plásticos/química , Impressão Tridimensional , Soroalbumina Bovina/química , Animais , Bovinos , Força Compressiva , Testes Mecânicos , Água/química
3.
Nanoscale ; 13(14): 6772-6779, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885479

RESUMO

Protein-based materials are usually considered as insulators, although conductivity has been recently shown in proteins. This fact opens the door to develop new biocompatible conductive materials. While there are emerging efforts in this area, there is an open challenge related to the limited conductivity of protein-based systems. This work shows a novel approach to tune the charge transport properties of protein-based materials by using electron-dense AuNPs. Two strategies are combined in a unique way to generate the conductive solid films: (1) the controlled self-assembly of a protein building block; (2) the templating of AuNPs by the engineered building block. This bottom-up approach allows controlling the structure of the films and the distribution of the AuNPs within, leading to enhanced conductivity. This work illustrates a promising strategy for the development of effective hybrid protein-based bioelectrical materials.


Assuntos
Dopagem Esportivo , Nanopartículas Metálicas , Condutividade Elétrica , Ouro , Proteínas
4.
Nanoscale ; 12(7): 4612-4621, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32043516

RESUMO

Hybrid nanostructures are constructed by the direct coupling of fluorescent quantum dots and plasmonic gold nanoparticles. Self-assembly is directed by the strong affinity between two artificial α-repeat proteins that are introduced in the capping layers of the nanoparticles at a controlled surface density. The proteins have been engineered to exhibit a high mutual affinity, corresponding to a dissociation constant in the nanomolar range, towards the protein-functionalized quantum dots and gold nanoparticles. Protein-mediated self-assembly is evidenced by surface plasmon resonance and gel electrophoresis. The size and the structure of colloidal superstructures of complementary nanoparticles are analyzed by transmission electron microscopy and small angle X-ray scattering. The size of the superstructures is determined by the number of proteins per nanoparticle. The well-defined geometry of the rigid protein complex sets a highly uniform interparticle distance of 8 nm that affects the emission properties of the quantum dots in the hybrid ensembles. Our results open the route to the design of hybrid emitter-plasmon colloidal assemblies with controlled near-field coupling and better optical response.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Proteínas/química , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície , Eletroforese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...