Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecancermedicalscience ; 17: 1547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377687

RESUMO

Notwithstanding the progress made across the cancer care continuum, a major problem that many patients with cancer experience is the difficulty of access to global standards of care. Awareness of this problem has been increasing most especially when the economic context of a country forces health systems to deliver quality care despite the rising costs of diagnostic and therapeutic innovations amidst limited resources. Ultimately, inappropriate delivery of care to patients with cancer contributes to inadequate and unequal access to high-value therapy increasing financial toxicity among patients. This paper aims to highlight (1) the economic burden of cancer in the Philippines, (2) the saliency of identifying low-value interventions which come in two forms: the persistent over usage of proven ineffective modalities, and the underusage of potentially effective ones, and (3) the adverse effects of a decentralized health care system. The paper will also provide suggestions to address the challenges of achieving health equity in cancer care.

2.
J Med Virol ; 95(1): e28241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263448

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world, presenting a new threat to global public human health. Due to the large number of mutations accumulated by SARS-CoV-2 Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse-transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for diagnosing coronavirus disease 2019 (COVID-19). Thus, we aimed to assess the impact of the currently endemic Omicron sublineages BA.4 and BA.5 on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease 2019 (COVID-19) diagnosis via in silico analysis. We employed whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and the Omicron VoC viral genome. METHODS: In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for specifically detecting SARS-CoV-2 Omicron BA.4 and BA.5 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. Mismatches between amplicon regions of SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and clustering analysis of corresponding amplicon sequences was carried out. RESULTS: From the 1164 representative SARS-CoV-2 Omicron VoC BA.4 sublineage genomes analyzed, a substitution in the first five nucleotides (C to T) of the amplicon's 3'-end was observed in all samples resulting in 0% sensitivity for assays HKUnivRdRp/Hel (mismatch in reverse primer) and CoremCharite N (mismatch in both forward and reverse primers). Due to a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC), the sensitivity of the ChinaCDC N assay was at 0.69%. The 10 nucleotide mismatches in the reverse primer resulted in 0.09% sensitivity for Omicron sublineage BA.4 for Thai N assay. Of the 1926 BA.5 sublineage genomes, HKUnivRdRp/Hel assay also had 0% sensitivity. A sensitivity of 3.06% was observed for the ChinaCDC N assay because of a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC). Similarly, due to the 10 nucleotide mismatches in the reverse primer, the Thai N assay's sensitivity was low at 0.21% for sublineage BA.5. Further, eight assays for BA.4 sublineage retained high sensitivity (more than 97%) and 9 assays for BA.5 sublineage retained more than 99% sensitivity. CONCLUSION: We observed four assays (HKUnivRdRp/Hel, ChinaCDC N, Thai N, CoremCharite N) that could potentially result in false negative results for SARS-CoV-2 Omicron VoCs BA.4 and BA.5 sublineages. Interestingly, CoremCharite N had 0% sensitivity for Omicron Voc BA.4 but 99.53% sensitivity for BA.5. In addition, 66.67% of the assays for BA.4 sublineage and 75% of the assays for BA.5 sublineage retained high sensitivity. Further, amplicon clustering and additional substitution analysis along with sensitivity analysis could be used for the modification and development of RT-qPCR assays for detecting SARS-CoV-2 Omicron VoC sublineages.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Primers do DNA , Nucleotídeos , Sequenciamento Completo do Genoma
3.
J Biomol Struct Dyn ; 40(22): 12209-12220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463219

RESUMO

The severity of the COVID-19 pandemic has necessitated the search for drugs against SARS-CoV-2. In this study, we explored via in silico approaches myxobacterial secondary metabolites against various receptor-binding regions of SARS-CoV-2 spike which are responsible in recognition and attachment to host cell receptors mechanisms, namely ACE2, GRP78, and NRP1. In general, cyclic depsipeptide chondramides conferred high affinities toward the spike RBD, showing strong binding to the known viral hot spots Arg403, Gln493 and Gln498 and better selectivity compared to most host cell receptors studied. Among them, chondramide C3 (1) exhibited a binding energy which remained relatively constant when docked against most of the spike variants. Chondramide C (2) on the other hand exhibited strong affinity against spike variants identified in the United Kingdom (N501Y), South Africa (N501Y, E484K, K417N) and Brazil (N501Y, E484K, K417T). Chondramide C6 (9) showed highest BE towards GRP78 RBD. Molecular dynamics simulations were also performed for chondramides 1 and 2 against SARS-CoV-2 spike RBD of the Wuhan wild-type and the South African variant, respectively, where resulting complexes demonstrated dynamic stability within a 120-ns simulation time. Protein-protein binding experiments using HADDOCK illustrated weaker binding affinity for complexed chondramide ligands in the RBD against the studied host cell receptors. The chondramide derivatives in general possessed favorable pharmacokinetic properties, highlighting their potential as prototypic anti-COVID-19 drugs limiting viral attachment and possibly minimizing viral infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Depsipeptídeos , Humanos , SARS-CoV-2 , Chaperona BiP do Retículo Endoplasmático , Pandemias , Glicoproteína da Espícula de Coronavírus , Depsipeptídeos/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica
4.
J Genet Eng Biotechnol ; 19(1): 104, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272647

RESUMO

BACKGROUND: Accessing COVID-19 vaccines is a challenge despite successful clinical trials. This burdens the COVID-19 treatment gap, thereby requiring accelerated discovery of anti-SARS-CoV-2 agents. This study explored the potential of anti-HIV reverse transcriptase (RT) phytochemicals as inhibitors of SARS-CoV-2 non-structural proteins (nsps) by targeting in silico key sites in the structures of SARS-CoV-2 nsps. One hundred four anti-HIV phytochemicals were subjected to molecular docking with nsp3, 5, 10, 12, 13, 15, and 16. Top compounds in complex with the nsps were investigated further through molecular dynamics. The drug-likeness and ADME (absorption, distribution, metabolism, and excretion) properties of the top compounds were also predicted using SwissADME. Their toxicity was likewise determined using OSIRIS Property Explorer. RESULTS: Among the top-scoring compounds, the polyphenolic functionalized natural products comprised of biflavones 1, 4, 11, 13, 14, 15; ellagitannin 9; and bisisoquinoline alkaloid 19 were multi-targeting and exhibited strongest binding affinities to at least two nsps (binding energy = - 7.7 to - 10.8 kcal/mol). The top ligands were stable in complex with their target nsps as determined by molecular dynamics. Several top-binding compounds were computationally druggable, showed good gastrointestinal absorptive property, and were also predicted to be non-toxic. CONCLUSIONS: Twenty anti-HIV RT phytochemicals showed multi-targeting inhibitory potential against SARS-CoV-2 non-structural proteins 3, 5, 10, 12, 13, 15, and 16. Our results highlight the importance of polyhydroxylated aromatic substructures for effective attachment in the binding/catalytic sites of nsps involved in post-translational mechanism pathways. As such with the nsps playing vital roles in viral pathogenesis, our findings provide inspiration for the design and discovery of novel anti-COVID-19 drug prototypes.

5.
Biology (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207293

RESUMO

Artificial sweeteners are widely used food ingredients in beverages and drinks to lower calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popularity has increased, the release of artificial sweetener to the aquatic environment has also increased at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K, alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio) as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume, cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall, our finding supports the safety of artificial sweetener exposure. However, several finding like a significant increase in the heart rate and heart rate variability after incubation in several artificial sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes observed after saccharine exposure.

6.
ACS Omega ; 6(12): 8403-8417, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817501

RESUMO

Inhibition of the major cyclic adenosine monophosphate-metabolizing enzyme PDE4 has shown potential for the discovery of drugs for cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. As a springboard to explore new anti-cancer and anti-Alzheimer's chemical prototypes from rare Annonaceae species, the present study evaluated anti-PDE4B along with antiproliferative and anti-cholinesterase activities of the extracts of the Philippine endemic species Uvaria alba using in vitro assays and framed the resulting biological significance through computational binding and reactivity-based experiments. Thus, the PDE4 B2B-inhibiting dichloromethane sub-extract (UaD) of U. alba elicited antiproliferative activity against chronic myelogenous leukemia (K-562) and cytostatic effects against human cervical cancer (HeLa). The extract also profoundly inhibited acetylcholinesterase (AChE), an enzyme involved in the progression of neurodegenerative diseases. Chemical profiling analysis of the bioactive extract identified 18 putative secondary metabolites. Molecular docking and molecular dynamics simulations showed strong free energy binding mechanisms and dynamic stability at 50-ns simulations in the catalytic domains of PDE4 B2B, ubiquitin-specific peptidase 14, and Kelch-like ECH-associated protein 1 (KEAP-1 Kelch domain) for the benzylated dihydroflavone dichamanetin (16), and of an AChE and KEAP-1 BTB domain for 3-(3,4-dihydroxybenzyl)-3',4',6-trihydroxy-2,4-dimethoxychalcone (8) and grandifloracin (15), respectively. Density functional theory calculations to demonstrate Michael addition reaction of the most electrophilic metabolite and kinetically stable grandifloracin (15) with Cys151 of the KEAP-1 BTB domain illustrated favorable formation of a ß-addition adduct. The top-ranked compounds also conferred favorable in silico pharmacokinetic properties.

7.
Antioxidants (Basel) ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807713

RESUMO

As a nicotinoid neurotoxic insecticide, imidacloprid (IMI) works by disrupting nerve transmission via nicotinic acetylcholine receptor (nAChR). Although IMI is specifically targeting insects, nontarget animals such as the freshwater shrimp, Neocaridina denticulata, could also be affected, thus causing adverse effects on the aquatic environment. To investigate IMI toxicity on nontarget organisms like N. denticulata, their physiology (locomotor activity, heartbeat, and gill ventilation) and biochemical factors (oxidative stress, energy metabolism) after IMI exposure were examined. IMI exposure at various concentrations (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1 ppm) to shrimp after 24, 48, 72 h led to dramatic reduction of locomotor activity even at low concentrations. Meanwhile, IMI exposure after 92 h caused reduced heartbeat and gill ventilation at high concentrations. Biochemical assays were performed to investigate oxidative stress and energy metabolism. Interestingly, locomotion immobilization and cardiac activity were rescued after acetylcholine administration. Through molecular docking, IMI demonstrated high binding affinity to nAChR. Thus, locomotor activity and heartbeat in shrimp after IMI exposure may be caused by nAChR blockade and not alterations caused by oxidative stress and energy metabolism. To summarize, N. denticulata serves as an excellent and sensitive aquatic invertebrate model to conduct pesticide toxicity assays that encompass physiologic and biochemical examinations.

8.
J Biomol Struct Dyn ; 39(12): 4316-4333, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476574

RESUMO

The novel coronavirus SARS-CoV2, the causative agent of the pandemic disease COVID-19, emerged in December 2019 forcing lockdown of communities in many countries. The absence of specific drugs and vaccines, the rapid transmission of the virus, and the increasing number of deaths worldwide necessitated the discovery of new substances for anti-COVID-19 drug development. With the aid of bioinformatics and computational modelling, ninety seven antiviral secondary metabolites from fungi were docked onto five SARS-CoV2 enzymes involved in viral attachment, replication, post-translational modification, and host immunity evasion infection mechanisms followed by molecular dynamics simulation and in silico ADMET prediction (absorption, distribution, metabolism, excretion and toxicity) of the hit compounds. Thus, three fumiquinazoline alkaloids scedapin C (15), quinadoline B (19) and norquinadoline A (20), the polyketide isochaetochromin D1 (8), and the terpenoid 11a-dehydroxyisoterreulactone A (11) exhibited high binding affinities on the target proteins, papain-like protease (PLpro), chymotrypsin-like protease (3CLpro), RNA-directed RNA polymerase (RdRp), non-structural protein 15 (nsp15), and the spike binding domain to GRP78. Molecular dynamics simulation was performed to optimize the interaction and investigate the stability of the top-scoring ligands in complex with the five target proteins. All tested complexes were found to have dynamic stability. Of the five top-scoring metabolites, quinadoline B (19) was predicted to confer favorable ADMET values, high gastrointestinal absorptive probability and poor blood-brain barrier crossing capacities.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , RNA Viral , Controle de Doenças Transmissíveis , Descoberta de Drogas , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos , Humanos , Simulação de Acoplamento Molecular , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Ligação Viral
9.
Nat Prod Res ; 35(23): 5229-5232, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32202440

RESUMO

Chromatographic purification of the DCM sub-extract of Uvaria grandiflora led to the isolation and characterization of a new polyoxygenated cyclohexane derivative, grandifloranol (1), together with five known compounds. Among the compounds isolated, zeylenone (3) showed moderate antitubercular activity against Mycobacterium tuberculosis H37Rv with MIC90 value of 51.2 µM and antiproliferative or cytotoxic activity against human myeloid leukaemia (K-562) and HeLa cells with IC50 values of 2.3 and 18.3 µM, respectively.


Assuntos
Uvaria , Linhagem Celular Tumoral , Cicloexanos , Cicloexenos , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...