Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(22): e2400271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647427

RESUMO

Tissue-mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue-mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a novel sacrificial core to fabricate a hollow, ellipsoid-shaped bladder phantom complete with inlet and outlet tubes, which allow liquids to flow through and expand this phantom, is adopted. This dynamic bladder phantom with realistic mechanical and acoustic properties to human tissues in combination with the developed skin, soft tissue, and subcutaneous adipose tissue TMMs, culminates in a human scale torso tank and electro-mechanical system that can be systematically utilized for characterizing various medical imaging devices.


Assuntos
Imagens de Fantasmas , Humanos , Materiais Biomiméticos/química , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Acústica/instrumentação , Desenho de Equipamento/métodos , Módulo de Elasticidade
2.
ACS Biomater Sci Eng ; 9(5): 2070-2086, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34735770

RESUMO

Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body's continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.


Assuntos
Fontes de Energia Elétrica , Dispositivos Eletrônicos Vestíveis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...