Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143230

RESUMO

Bats are an important source of viral zoonoses, including paramyxoviruses. The paramyxoviral Pararubulavirus genus contains viruses mostly derived from bats that are common, diverse, distributed throughout the Old World, and known to be zoonotic. Here, we describe a new member of the genus Achimota pararubulavirus 3 (AchPV3) and its isolation from the urine of African straw-coloured fruit bats on primary bat kidneys cells. We sequenced and analysed the genome of AchPV3 relative to other Paramyxoviridae, revealing it to be similar to known pararubulaviruses. Phylogenetic analysis of AchPV3 revealed the failure of molecular detection in the urine sample from which AchPV3 was derived and an attachment protein most closely related with AchPV2-a pararubulavirus known to cause cross-species transmission. Together these findings add to the picture of pararubulaviruses, their sources, and variable zoonotic potential, which is key to our understanding of host restriction and spillover of bat-derived paramyxoviruses. AchPV3 represents a novel candidate zoonosis and an important tool for further study.


Assuntos
Quirópteros/virologia , Infecções por Paramyxoviridae/veterinária , Paramyxovirinae/classificação , Filogenia , Animais , Células Cultivadas , Chlorocebus aethiops , Genoma Viral , Rim/citologia , Rim/virologia , Infecções por Paramyxoviridae/urina , Paramyxovirinae/isolamento & purificação , RNA Viral , Células Vero , Sequenciamento Completo do Genoma , Zoonoses/virologia
2.
PLoS One ; 14(4): e0216090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31034535

RESUMO

Climate change and infectious disease by the chytrid fungus Batrachochytrium dendrobatidis (Bd) are major drivers of amphibian extinctions, but the potential interactions of these two factors are not fully understood. Temperature is known to influence (1) the infectivity, pathogenicity and virulence of Bd; (2) host-parasite dynamics, especially when both hosts and parasites are ectothermic organisms exhibiting thermal sensitivities that may or may not differ; and (3) amphibian vulnerability to extinction depending on their heat tolerance, which may decrease with infection. Thus, in a global warming scenario, with rising temperatures and more frequent and extreme weather events, amphibians infected by Bd could be expected to be more vulnerable if temperatures approach their critical thermal maximum (CTmax). However, it is also possible that predicted high temperatures could clear the Bd infection, thus enhancing amphibian survival. We tested these hypotheses by measuring CTmax values of Bd-infected and Bd-free aquatic tadpoles and terrestrial toadlets/juveniles of the common midwife toad (Alytes obstetricans) and examining whether exposure of A. obstetricans individuals to peak temperatures reaching their CTmax clears them from Bd infection. We show that (1) Bd has a wide thermal tolerance range; (2) Bd is capable of altering the thermal physiology of A. obstetricans, which is stage-dependent, lowering CTmax in tadpoles but not in toadlets; and (3) Bd infection is not cleared after exposure of tadpoles or toadlets to CTmax. Living under climatic change with rising temperatures, the effect of Bd infection might tip the balance and lead some already threatened amphibian communities towards extinction.


Assuntos
Quitridiomicetos/fisiologia , Interações Hospedeiro-Patógeno , Termotolerância/fisiologia , Animais , Anuros/microbiologia , Larva/microbiologia , Micoses/microbiologia , Espanha
3.
Dis Aquat Organ ; 131(1): 73-78, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30324916

RESUMO

The emerging infectious disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, is a major driver pushing many amphibian species to the brink of extinction. Substantial efforts to develop effective protocols that use antifungal drugs have had notable success. Here, we used the antifungal agents itraconazole and thiophanate-methyl, singly and in combination, in an attempt to treat common midwife toad Alytes obstetricans larvae naturally infected with the globalized hypervirulent lineage of B. dendrobatidis. Despite the successful use of itraconazole in a closely related species (A. muletensis), our results show that these antifungal treatments are not always effective and that full clearance of animals cannot be assumed following treatment.


Assuntos
Anuros/microbiologia , Quitridiomicetos , Itraconazol/uso terapêutico , Micoses/veterinária , Tiofanato/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Larva/microbiologia , Micoses/tratamento farmacológico , Micoses/microbiologia
4.
Sci Data ; 3: 160049, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479120

RESUMO

Bats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.


Assuntos
Quirópteros/imunologia , Lyssavirus , Animais , Henipavirus , Nigéria , Rubulavirus
5.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26582843

RESUMO

Methods to mitigate the impacts of emerging infectious diseases affecting wildlife are urgently needed to combat loss of biodiversity. However, the successful mitigation of wildlife pathogens in situ has rarely occurred. Indeed, most strategies for combating wildlife diseases remain theoretical, despite the wealth of information available for combating infections in livestock and crops. Here, we report the outcome of a 5-year effort to eliminate infection with Batrachochytrium dendrobatidis affecting an island system with a single amphibian host. Our initial efforts to eliminate infection in the larval reservoir using a direct application of an antifungal were successful ex situ but infection returned to previous levels when tadpoles with cleared infections were returned to their natal sites. We subsequently combined antifungal treatment of tadpoles with environmental chemical disinfection. Infection at four of the five pools where infection had previously been recorded was eradicated, and remained so for 2 years post-application.


Assuntos
Anuros/microbiologia , Quitridiomicetos/efeitos dos fármacos , Micoses/veterinária , Animais , Animais Selvagens , Antifúngicos/administração & dosagem , Desinfetantes , Ilhas , Itraconazol/administração & dosagem , Larva/efeitos dos fármacos , Larva/microbiologia , Micoses/tratamento farmacológico , Peróxidos , Lagoas/microbiologia , Espanha , Ácidos Sulfúricos
6.
PLoS One ; 10(3): e0120237, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793985

RESUMO

Amphibians are one of the groups of wildlife most seriously threatened by emerging infectious disease. In particular, chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis, is responsible for amphibian species declines on a worldwide scale. Population-level outcomes following the introduction of the pathogen are context dependent and mediated by a large suite of abiotic and biotic variables. In particular, studies have shown that temperature has a key role in determining infection dynamics owing to the ectothermic nature of the amphibian host and temperature-dependency of pathogen growth rates. To assess the temperature-dependent seasonality of infectious burdens in a susceptible host species, we monitored lowland populations of larval midwife toads, Alytes obstetricians, in Central Spain throughout the year. We found that infections were highly seasonal, and inversely correlated against water temperature, with the highest burdens of infection seen during the colder months. Short-term impacts of water-temperature were found, with the minimum temperatures occurring before sampling being more highly predictive of infectious burdens than were longer-term spans of temperature. Our results will be useful for selecting the optimal time for disease surveys and, more broadly, for determining the key periods to undertake disease mitigation.


Assuntos
Anuros/microbiologia , Quitridiomicetos/fisiologia , Micoses/microbiologia , Temperatura , Água , Animais , Larva/microbiologia , Micoses/epidemiologia , Prevalência , Fatores de Tempo
7.
PLoS One ; 7(1): e30346, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253928

RESUMO

Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobón island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobón and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobón island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobón are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Quirópteros/imunologia , Quirópteros/virologia , Geografia , Henipavirus/imunologia , África , Animais , Western Blotting , Extremidades/anatomia & histologia , Feminino , Fluorescência , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...