Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232877

RESUMO

Cellular memory is a controversial concept representing the ability of cells to "write and memorize" stressful experiences via epigenetic operators. The progressive course of chronic, non-communicable diseases such as type 2 diabetes mellitus, cancer, and arteriosclerosis, is likely driven through an abnormal epigenetic reprogramming, fostering the hypothesis of a cellular pathologic memory. Accordingly, cultured diabetic and cancer patient-derived cells recall behavioral traits as when in the donor's organism irrespective to culture time and conditions. Here, we analyze the data of studies conducted by our group and led by a cascade of hypothesis, in which we aimed to validate the hypothetical existence and transmissibility of a cellular pathologic memory in diabetes, arteriosclerotic peripheral arterial disease, and cancer. These experiments were based on the administration to otherwise healthy animals of cell-free filtrates prepared from human pathologic tissue samples representative of each disease condition. The administration of each pathologic tissue homogenate consistently induced the faithful recapitulation of: (1) Diabetic archetypical changes in cutaneous arterioles and nerves. (2) Non-thrombotic arteriosclerotic thickening, collagenous arterial encroachment, aberrant angiogenesis, and vascular remodeling. (3) Pre-malignant and malignant epithelial and mesenchymal tumors in different organs; all evocative of the donor's tissue histopathology and with no barriers for interspecies transmission. We hypothesize that homogenates contain pathologic tissue memory codes represented in soluble drivers that "infiltrate" host's animal cells, and ultimately impose their phenotypic signatures. The identification and validation of the actors in behind may pave the way for future therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Animais , Humanos , Neovascularização Patológica
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163435

RESUMO

Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.


Assuntos
Arteriosclerose/metabolismo , Tecido de Granulação/metabolismo , Artéria Poplítea/lesões , Proteínas/administração & dosagem , Lesões do Sistema Vascular/induzido quimicamente , Idoso , Animais , Arteriosclerose/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Lesões do Sistema Vascular/patologia
3.
Scars Burn Heal ; 8: 20595131211067380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198238

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU) are characterised by high levels of inflammatory mediators, resulting from sustained hyperglycaemic insult and the local microbial biofilm. The intralesional administration of epidermal growth factor (EGF) has emerged as an effective treatment that stimulates granulation and closure of DFU, reducing the risk of amputation. Within the wound, fibroblasts play key roles during the healing process, promoting granulation and contraction. The aim of the present study was to examine the anti-inflammatory effect of EGF in DFU-derived fibroblasts, challenged with lipopolysaccharide (LPS), under hyperglycaemic conditions, recreating in vitro what happens in a clinical scenario. METHODS: Healthy skin (HS) and DFU granulation tissue biopsies were used to isolate primary fibroblasts. The effect of LPS on cell proliferation was analysed. Transcriptional expression of toll-like receptor (TLR) pathway mediators (TLR4, TLR2, CD14, MYD88 and NFKB) and pro-inflammatory cytokines (TNF, IL-6 and IL-1B) were measured by semi-quantitative polymerase chain reaction (qPCR), in cells treated with appropriate concentrations of LPS, EGF and their combination. IL-6 protein concentration was quantified by ELISA. RESULTS: LPS stimulated proliferation of HS-derived fibroblasts, while inhibiting the proliferation of cells derived from DFU at the highest assayed concentration of 1 µg/mL. Regarding the TLR signalling pathway, LPS increased messenger RNA levels of mediators and pro-inflammatory genes, while EGF, alone or in the presence of LPS, downregulated them, except for IL-1B. CONCLUSION: The results suggest that EGF might elicit an anti-inflammatory response in LPS-challenged fibroblasts, even in a hyperglycaemic milieu. Collectively, our findings contribute to explain newly observed effects of EGF in the clinical arena. LAY SUMMARY: In this research article, we analyse the putative anti-inflammatory effect of epidermal growth factor (EGF) on fibroblast isolated from diabetic foot ulcer (DFU) granulation tissue. To induce the inflammatory response, the cells were treated with lipopolysaccharide (LPS), simulating the gram-negative bacterial infection that takes place in the wounds of diabetic patients. We studied the expression of genes involved in bacterial recognition receptors signalling pathway and those that code for different pro-inflammatory cytokines.We obtained primary fibroblasts from biopsies of a neuropathic diabetic ulcer and from healthy skin, the former was used as the control. Cells were isolated and grown in high glucose Dulbecco's Modified Eagle Medium (DMEM) culture medium, to simulate the hyperglycaemic insult. The effect of increasing concentrations of LPS on cell proliferation was analysed. Relative transcriptional expression of genes in the study was quantified by quantitative polymerase chain reaction (qPCR) in cells treated with LPS, EGF or a combination. Untreated cells served to normalise the expression.In the present study, we demonstrated that EGF modulated the primary immune response by reducing the activation of pathogen-recognition receptors and common genes involved in these signalling pathways, even in hyperglycaemic conditions. This effect translated in a decreased expression of pro-inflammatory cytokines. These results contribute to explain our previous observations about the reduction of circulating levels of inflammatory cytokines after local administration of human recombinant EGF in DFU. Further molecular studies should be carried out to fully understand the biological mechanisms elicited by EGF in this clinical scenario.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36994347

RESUMO

Lower limb ulcers in type-2 diabetic patients are a frequent complication that tributes to amputation and reduces survival. We hypothesized that diabetic healing impairment and other histopathologic hallmarks are mediated by a T2DM-induced tissue priming/metabolic memory that can be transferred from humans to healthy recipient animals and consequently reproduce diabetic donor's phenotypes. We examined the effect of human T2DM tissue homogenates injected into non-diabetic rat excisional wounds. Fresh granulation tissue, popliteal artery, and peroneal nerve of patients with T2DM were obtained following amputation. Post-mammoplasty granulation and post-traumatic amputation-tissue of normal subjects acted as controls. The homogenates were intralesionally injected for 6-7 days into rats' excisional thickness wounds. Infiltration with the different homogenates caused impaired wound closure, inflammation, nerve degeneration, and arterial thickening (all P < 0.01 vs relevant control) resembling histopathology of diabetic donor tissues. Control materials caused marginal inflammation only. Infiltration with glycated bovine albumin provoked inflammation and wound healing delay but did not induce arterial thickening. The reproduction of human diabetic traits in healthy recipient animals through a tissue homogenate support the notion on the existence of tissue metabolic memory-associated and transmissible factors, involved in the pathogenesis of diabetic complications. These may have futuristic clinical implications for medical interventions.

5.
Peptides ; 126: 170269, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32045621

RESUMO

The insulin signaling pathway plays a pivotal role in glucose metabolism and metabolic homeostasis. Disruption of this pathway is commonly seen in critical illness such as following severe burn injuries where homeostatic control is lost, leading to "insulin resistance" with poor blood glucose control. The aberrant signaling pathways involved in insulin resistance following burn injury include increases in hyperglycemic stress hormones, pro-inflammatory cytokines and free radical production. Leakage of mitochondrial sequestered self-antigens and signaling between mitochondria and endoplasmic reticulum also contribute to insulin resistance. Greater understanding of molecular processes involved in burn-related insulin resistance could potentially lead to the development of novel therapeutic approaches to improve patient management.


Assuntos
Queimaduras/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Resistência à Insulina , Mitocôndrias/patologia , Animais , Humanos
6.
Int Wound J ; 16(6): 1294-1303, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31429187

RESUMO

Diabetic foot ulcer is one of the most frightened diabetic complications leading to amputation disability and early mortality. Diabetic wounds exhibit a complex networking of inflammatory cytokines, local proteases, and reactive oxygen and nitrogen species as a pathogenic polymicrobial biofilm, overall contributing to wound chronification and host homeostasis imbalance. Intralesional infiltration of epidermal growth factor (EGF) has emerged as a therapeutic alternative to diabetic wound healing, reaching responsive cells while avoiding the deleterious effect of proteases and the biofilm on the wound's surface. The present study shows that intralesional therapy with EGF is associated with the systemic attenuation of pro-inflammatory markers along with redox balance recovery. A total of 11 diabetic patients with neuropathic foot ulcers were studied before and 3 weeks after starting EGF treatment. Evaluations comprised plasma levels of pro-inflammatory, redox balance, and glycation markers. Pro-inflammatory markers such as erythrosedimentation rate, C-reactive protein, interleukin-6, soluble FAS, and macrophage inflammatory protein 1-alpha were significantly reduced by EGF therapy. Oxidative capacity, nitrite/nitrate ratio, and pentosidine were also reduced, while soluble receptor for advanced glycation end-products significantly increased. Overall, our results indicate that the local intralesional infiltration of EGF translates in systemic anti-inflammatory and antioxidant effects, as in attenuation of the glycation products' negative effects.


Assuntos
Pé Diabético/tratamento farmacológico , Fator de Crescimento Epidérmico/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Idoso , Arginina/análogos & derivados , Arginina/sangue , Biomarcadores/sangue , Sedimentação Sanguínea , Proteína C-Reativa/análise , Quimiocina CCL3/sangue , Citocinas/sangue , Feminino , Humanos , Injeções Intralesionais , Lisina/análogos & derivados , Lisina/sangue , Masculino , Pessoa de Meia-Idade , Nitratos/sangue , Nitritos/sangue , Receptor para Produtos Finais de Glicação Avançada/sangue , Cicatrização , Receptor fas/sangue
7.
Int Wound J ; 15(4): 538-546, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29464859

RESUMO

Hypertrophic scars (HTS) and keloids are forms of aberrant cutaneous healing with excessive extracellular matrix (ECM) deposition. Current therapies still fall short and cause undesired effects. We aimed to thoroughly evaluate the ability of growth hormone releasing peptide 6 (GHRP6) to both prevent and reverse cutaneous fibrosis and to acquire the earliest proteome data supporting GHRP6's acute impact on aesthetic wound healing. Two independent sets of experiments addressing prevention and reversion effects were conducted on the classic HTS model in rabbits. In the prevention approach, the wounds were assigned to topically receive GHRP6, triamcinolone acetonide (TA), or vehicle (1% sodium carboxy methylcellulose [CMC]) from day 1 to day 30 post-wounding. The reversion scheme was based on the infiltration of either GHRP6 or sterile saline in mature HTS for 4 consecutive weeks. The incidence and appearance of HTS were systematically monitored. The sub-epidermal fibrotic core area of HTS was ultrasonographically determined, and the scar elevation index was calculated on haematoxylin/eosin-stained, microscopic digitised images. Tissue samples were collected for proteomics after 1 hour of HTS induction and treatment with either GHRP6 or vehicle. GHRP6 prevented the onset of HTS without the untoward reactions induced by the first-line treatment triamcinolone acetonide (TA); however, it failed to significantly reverse mature HTS. The preliminary proteomic study suggests that the anti-fibrotic preventing effect exerted by GHRP6 depends on different pathways involved in lipid metabolism, cytoskeleton arrangements, epidermal cells' differentiation, and ECM dynamics. These results enlighten the potential success of GHRP6 as one of the incoming alternatives for HTS prevention.


Assuntos
Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Cicatrização/efeitos dos fármacos , Administração Cutânea , Animais , Modelos Animais de Doenças , Humanos , Proteômica , Coelhos
8.
Biomed Res Int ; 2017: 2923759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904951

RESUMO

Soon after epidermal growth factor (EGF) discovery, some in vivo models appeared demonstrating its property to enhance cutaneous wound healing. EGF was the first growth factor (GF) introduced in the clinical arena as a healing enhancer, exerting its mitogenic effects on epithelial, fibroblastoid, and endothelial cells via a tyrosine kinase membrane receptor. Compelling evidences from the 90s documented that, for EGF, locally prolonged bioavailability and hourly interaction with the receptor were necessary for a successful tissue response. Eventually, the enthusiasm on the clinical use of EGF to steer the healing process was wiped out as the topical route to deliver proteins started to be questioned. The simultaneous in vivo experiments, emphasizing the impact of the parenterally administered EGF on epithelial and nonepithelial organs in terms of mitogenesis and cytoprotection, rendered the theoretical fundamentals for the injectable use of EGF and shaped the hypothesis that locally infiltrating the diabetic ulcers would lead to an effective healing. Although the diabetic chronic wounds microenvironment is hostile for local GFs bioavailability, EGF local infiltration circumvented the limitations of its topical application, thus expanding its therapeutic prospect. Our clinical pharmacovigilance and basic studies attest the significance of the GF local infiltration for chronic wounds healing.


Assuntos
Pé Diabético/tratamento farmacológico , Fator de Crescimento Epidérmico/uso terapêutico , Cicatrização/genética , Administração Tópica , Microambiente Celular/efeitos dos fármacos , Pé Diabético/genética , Pé Diabético/patologia , Fator de Crescimento Epidérmico/genética , Humanos , Receptores Proteína Tirosina Quinases/genética
9.
Plast Surg Int ; 2016: 4361702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200188

RESUMO

In addition to its cytoprotective effects, growth hormone-releasing peptide 6 (GHRP-6) proved to reduce liver fibrotic induration. CD36 as one of the GHRP-6 receptors appears abundantly represented in cutaneous wounds granulation tissue. The healing response in a scenario of CD36 agonistic stimulation had not been previously investigated. Excisional full-thickness wounds (6 mmØ) were created in the dorsum of Wistar rats and topically treated twice a day for 5 days. The universal model of rabbit's ears hypertrophic scars was implemented and the animals were treated daily for 30 days. Treatments for both species were based on a CMC jelly composition containing GHRP-6 400 µg/mL. Wounds response characterization included closure dynamic, RT-PCR transcriptional profile, histology, and histomorphometric procedures. The rats experiment indicated that GHRP-6 pharmacodynamics involves attenuation of immunoinflammatory mediators, their effector cells, and the reduction of the expression of fibrotic cytokines. Importantly, in the hypertrophic scars rabbit's model, GHRP-6 intervention dramatically reduced the onset of exuberant scars by activating PPARγ and reducing the expression of fibrogenic cytokines. GHRP-6 showed no effect on the reversion of consolidated lesions. This evidence supports the notion that CD36 is an active and pharmacologically approachable receptor to attenuate wound inflammation and accelerate its closure so as to improve wound esthetic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...