Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21229, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040826

RESUMO

Myasthenia Gravis (MG) is an autoimmune disease associated with severe neuromuscular weakness. Diagnostic confirmation of MG is typically delayed and secured in about 85% and 50% of patients with generalized and ocular MG, respectively with serum antibodies. We have identified a sensitive and specific diagnostic biomarker for various MG serotypes with quantitative proteomics. Serum proteomes of 18 individuals (MG patients, healthy controls (HC), Rheumatoid Arthritis (RA) were quantified in a pilot study and occurrence of high residual fibrinogen was validated by immunoblotting and further investigated by targeted mass spectrometry on the sera of 79 individuals (31 MG of various serotypes, 30 HC, 18 RA). Initial proteomic analysis identified high residual fibrinogen in MG patient sera which was then validated by antibody-based testing. Subsequently, a blinded study of independent samples showed 100% differentiation of MG patients from controls. A final serological quantification of 14 surrogate peptides derived from α-, ß-, and γ-subunits of fibrinogen in 79 individuals revealed fibrinogen to be highly specific and 100% sensitive for MG (p < 0.00001), with a remarkable average higher abundance of > 1000-fold over control groups. Our unanticipated discovery of high levels of residual serum fibrinogen in all MG patients can secure rapid bedside diagnosis of MG.


Assuntos
Artrite Reumatoide , Hemostáticos , Miastenia Gravis , Humanos , Fibrinogênio , Proteômica , Projetos Piloto , Sorogrupo , Biomarcadores , Autoanticorpos
2.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443732

RESUMO

We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.


Assuntos
Nanopartículas , Vírus , Humanos , Imunidade Inata
3.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37068306

RESUMO

Determining the interacting proteins in multiprotein complexes can be technically challenging. An emerging biochemical approach to this end is based on the 'thermal proximity co-aggregation' (TPCA) phenomenon. Accordingly, when two or more proteins interact to form a complex, they tend to co-aggregate when subjected to heat-induced denaturation and thus exhibit similar melting curves. Here, we explore the potential of leveraging TPCA for determining protein interactions. We demonstrate that dissimilarity measure-based information retrieval applied to melting curves tends to rank a protein-of-interest's interactors higher than its non-interactors, as shown in the context of pull-down assay results. Consequently, such rankings can reduce the number of confirmatory biochemical experiments needed to find bona fide protein-protein interactions. In general, rankings based on dissimilarity measures generated through metric learning further reduce the required number of experiments compared to those based on standard dissimilarity measures such as Euclidean distance. When a protein mixture's melting curves are obtained in two conditions, we propose a scoring function that uses melting curve data to inform how likely a protein pair is to interact in one condition but not another. We show that ranking protein pairs by their scores is an effective approach for determining condition-specific protein-protein interactions. By contrast, clustering melting curve data generally does not inform about the interacting proteins in multiprotein complexes. In conclusion, we report improved methods for dissimilarity measure-based computation of melting curves data that can greatly enhance the determination of interacting proteins in multiprotein complexes.


Assuntos
Complexos Multiproteicos , Proteínas
4.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230917

RESUMO

Endogenous glucocorticoids and their synthetic analogues, such as dexamethasone, stimulate receptor-mediated signal transduction mechanisms on target cells. Some of these mechanisms result in beneficial outcomes whereas others are deleterious in the settings of pathogen infections and immunological disorders. Here, we review recent studies by several groups, including our group, showing that glucocorticoids can directly interact with protein components on SARS-CoV-2, the causative agent of COVID-19. We postulate an antiviral defence mechanism by which endogenous glucocorticoids (e.g., cortisol produced in response to SARS-CoV-2 infection) can bind to multiple sites on SARS-CoV-2 surface protein, Spike, inducing conformational alterations in Spike subunit 1 (S1) that inhibit SARS-CoV-2 interaction with the host SARS-CoV-2 receptor, ACE2. We suggest that glucocorticoids-mediated inhibition of S1 interaction with ACE2 may, consequently, affect SARS-CoV-2 infectivity. Further, glucocorticoids interactions with Spike could protect against a broad spectrum of coronaviruses and their variants that utilize Spike for infection of the host. These notions may be useful for the design of new antivirals for coronavirus diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Dexametasona , Glucocorticoides/farmacologia , Humanos , Hidrocortisona , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Front Immunol ; 13: 906687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784352

RESUMO

Dexamethasone may reduce mortality in COVID-19 patients. Whether dexamethasone or endogenous glucocorticoids, such as cortisol, biochemically interact with SARS-CoV-2 spike 1 protein (S1), or its cellular receptor ACE2, is unknown. Using molecular dynamics (MD) simulations and binding energy calculations, we identified 162 druggable pockets in various conformational states of S1 and all possible binding pockets for cortisol and dexamethasone. Through biochemical binding studies, we confirmed that cortisol and dexamethasone bind to S1. Limited proteolysis and mass spectrometry analyses validated several MD identified binding pockets for cortisol and dexamethasone on S1. Interaction assays indicated that cortisol and dexamethasone separately and cooperatively disrupt S1 interaction with ACE2, through direct binding to S1, without affecting ACE2 catalytic activity. Cortisol disrupted the binding of the mutant S1 Beta variant (E484K, K417N, N501Y) to ACE2. Delta and Omicron variants are mutated in or near identified cortisol-binding pockets in S1, which may affect cortisol binding to them. In the presence of cortisol, we find increased inhibition of S1 binding to ACE2 by an anti-SARS-CoV-2 S1 human chimeric monoclonal antibody against the receptor binding domain. Whether glucocorticoid/S1 direct interaction is an innate defence mechanism that may have contributed to mild or asymptomatic SARS-CoV-2 infection deserves further investigation.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Anticorpos Antivirais , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Humanos , Hidrocortisona , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
6.
Biomolecules ; 12(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35625620

RESUMO

Much has been written about matrix metalloproteinases (MMPs) in health and disease conditions, but their roles in the setting of COVID-19 and associated illnesses remain understudied [...].


Assuntos
COVID-19 , Humanos , Metaloproteinases da Matriz
7.
Ageing Res Rev ; 73: 101513, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838734

RESUMO

Coronavirus Disease 2019 (COVID-19) is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) - the culprit of an ongoing pandemic responsible for the loss of over 3 million lives worldwide within a year and a half. While the majority of SARS-CoV-2 infected people develop no or mild symptoms, some become severely ill and may die from COVID-19-related complications. In this review, we compile and comment on a number of biomarkers that have been identified and are expected to enhance the detection, protection and treatment of individuals at high risk of developing severe illnesses, as well as enable the monitoring of COVID-19 prognosis and responsiveness to therapeutic interventions. Consistent with the emerging notion that the majority of COVID-19 deaths occur in older and frail individuals, we researched the scientific literature and report the identification of a subset of COVID-19 biomarkers indicative of increased vulnerability to developing severe COVID-19 in older and frail patients. Mechanistically, increased frailty results from reduced disease tolerance, a phenomenon aggravated by ageing and comorbidities. While biomarkers of ageing and frailty may predict COVID-19 severity, biomarkers of disease tolerance may predict resistance to COVID-19 with socio-economic factors such as access to adequate health care remaining as major non-biomolecular influencers of COVID-19 outcomes.


Assuntos
COVID-19 , Fragilidade , Idoso , Envelhecimento , Biomarcadores , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Humanos , SARS-CoV-2
8.
Biomolecules ; 11(3)2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800947

RESUMO

Many individuals infected with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) develop no or only mild symptoms, but some can go on onto develop a spectrum of pathologies including pneumonia, acute respiratory distress syndrome, respiratory failure, systemic inflammation, and multiorgan failure. Many pathogens, viral and non-viral, can elicit these pathologies, which justifies reconsidering whether the target of therapeutic approaches to fight pathogen infections should be (a) the pathogen itself, (b) the pathologies elicited by the pathogen interaction with the human host, or (c) a combination of both. While little is known about the immunopathology of SARS-CoV-2, it is well-established that the above-mentioned pathologies are associated with hyper-inflammation, tissue damage, and the perturbation of target organ metabolism. Mounting evidence has shown that these processes are regulated by endoproteinases (particularly, matrix metalloproteinases (MMPs)). Here, we review what is known about the roles played by MMPs in the development of COVID-19 and postulate a mechanism by which MMPs could influence energy metabolism in target organs, such as the lung. Finally, we discuss the suitability of MMPs as therapeutic targets to increase the metabolic tolerance of the host to damage inflicted by the pathogen infection, with a focus on SARS-CoV-2.


Assuntos
COVID-19/metabolismo , Pulmão/fisiopatologia , Metaloproteinases da Matriz/metabolismo , Proteínas Quinases/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , COVID-19/enzimologia , COVID-19/fisiopatologia , COVID-19/virologia , Comorbidade , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/enzimologia , Pulmão/metabolismo , Pulmão/virologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Síndrome do Desconforto Respiratório/enzimologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
Biomolecules ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920915

RESUMO

Matrix metalloproteinases (MMPs) cleave extracellular matrix proteins, growth factors, cytokines, and receptors to influence organ development, architecture, function, and the systemic and cell-specific responses to diseases and pharmacological drugs. Conversely, many diseases (such as atherosclerosis, arthritis, bacterial infections (tuberculosis), viral infections (COVID-19), and cancer), cholesterol-lowering drugs (such as statins), and tetracycline-class antibiotics (such as doxycycline) alter MMP activity through transcriptional, translational, and post-translational mechanisms. In this review, we summarize evidence that the aforementioned diseases and drugs exert significant epigenetic pressure on genes encoding MMPs, tissue inhibitors of MMPs, and factors that transcriptionally regulate the expression of MMPs. Our understanding of human pathologies associated with alterations in the proteolytic activity of MMPs must consider that these pathologies and their medicinal treatments may impose epigenetic pressure on the expression of MMP genes. Whether the epigenetic mechanisms affecting the activity of MMPs can be therapeutically targeted warrants further research.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Epigênese Genética/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Metaloproteinases da Matriz/genética , Tetraciclinas/farmacologia , Animais , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/genética , COVID-19/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tetraciclinas/uso terapêutico , Viroses/tratamento farmacológico , Viroses/genética , Tratamento Farmacológico da COVID-19
10.
Front Physiol ; 11: 568718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101055

RESUMO

Deficiency of matrix metalloproteinase 2 (MMP-2) causes a complex syndrome characterized by multicentric osteolysis, nodulosis, and arthropathy (MONA) as well as cardiac valve defects, dwarfism and hirsutism. MMP-2 deficient (Mmp2 -/-) mice are a model for this rare multisystem pediatric syndrome but their phenotype remains incompletely characterized. Here, we extend the phenotypic characterization of MMP-2 deficiency by comparing the levels of cytokines and chemokines, soluble cytokine receptors, angiogenesis factors, bone development factors, apolipoproteins and hormones in mice and humans. Initial screening was performed on an 8-year-old male presenting a previously unreported deletion mutation c1294delC (Arg432fs) in the MMP2 gene and diagnosed with MONA. Of eighty-one serum biomolecules analyzed, eleven were upregulated (>4-fold), two were downregulated (>4-fold) and sixty-eight remained unchanged, compared to unaffected controls. Specifically, Eotaxin, GM-CSF, M-CSF, GRO-α, MDC, IL-1ß, IL-7, IL-12p40, MIP-1α, MIP-1ß, and MIG were upregulated and epidermal growth factor (EGF) and ACTH were downregulated in this patient. Subsequent analysis of five additional MMP-2 deficient patients confirmed the upregulation in Eotaxin, IL-7, IL-12p40, and MIP-1α, and the downregulation in EGF. To establish whether these alterations are bona fide phenotypic traits of MMP-2 deficiency, we further studied Mmp2 -/- mice. Among 32 cytokines measured in plasma of Mmp2 -/- mice, the cytokines Eotaxin, IL-1ß, MIP-1α, and MIG were commonly upregulated in mice as well as patients with MMP-2 deficiency. Moreover, bioactive cortisol (a factor that exacerbates osteoporosis) was also elevated in MMP-2 deficient mice and patients. Among the factors we have identified to be dysregulated in MMP-2 deficiency many are osteoclastogenic and could potentially contribute to bone disorder in MONA. These new molecular phenotypic traits merit being targeted in future research aimed at understanding the pathological mechanisms elicited by MMP-2 deficiency in children.

11.
Front Physiol ; 11: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116759

RESUMO

Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone's main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.

12.
Can J Physiol Pharmacol ; 97(6): v, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31132030
13.
Sci Rep ; 9(1): 4340, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867536

RESUMO

Non-genetic MMP-2 insufficiency is a relatively unexplored condition which could be induced by pathological overexpression of endogenous MMP-2 inhibitors such as TIMPs and/or the acute phase reactant alpha-2-macroglobulin. Here, we investigate the hypothesis that human fibrinogen (FBG) - an acute phase reactant - inhibits human MMP-2. Following an unexpected observation where sera from human donors including arthritis patients with increased levels of serum FBG exhibited reduced binding of serum proMMP-2 to gelatin, we found that human FBG (0 to 3.6 mg/mL i.e., 0 to 10.6 µM) concentration-dependently inhibited human proMMP-2 and MMP2 from binding to gelatin. Moreover, at normal physiological concentrations, FBG (5.29-11.8 µM) concentration-dependently inhibited (40-70% inhibition) the cleavage of fluorescein-conjugated gelatin by MMP-2, but not MMP-9. Indicative of a mixed-type (combination of competitive and non-competitive) inhibition mechanism, FBG reduced the Vmax (24.9 ± 0.7 min-1 to 17.7 ± 0.9 min-1, P < 0.05) and increased the Michaelis-Menten constant KM (204 ± 6 nM to 478 ± 50 nM, P < 0.05) for the reaction of MMP-2 cleavage of fluorescein-conjugated gelatin. In silico analyses and studies of FBG neutralization with anti-FBG antibodies implicated the domains D and E of FBG in the inhibition of MMP-2. In conclusion, FBG is a natural selective MMP-2 inhibitor, whose pathological elevation could lead to MMP-2 insufficiency in humans.


Assuntos
Fibrinogênio/fisiologia , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas por Ionização por Electrospray
14.
Can J Physiol Pharmacol ; 97(6): 486-492, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30457883

RESUMO

A member of the matrix metalloproteinase family, matrix metalloproteinase-2 (MMP-2, gelatinase A), has been extensively studied for its role in both normal physiology and pathological processes. Whereas most research efforts in recent years have investigated the pathologies associated with MMP-2 overactivity, the pathological mechanisms elicited by MMP-2 underactivity are less well understood. Here, we distinguish between 2 states and describe their causes: (i) MMP-2 deficiency (complete loss of MMP-2 activity) and (ii) MMP-2 insufficiency (defined as MMP-2 activity below baseline levels). Further, we review the biology of MMP-2, summarizing the current literature on MMP-2 underactivity in both mice and humans, and describe research being conducted by our lab towards improving our understanding of the pathological mechanisms elicited by MMP-2 deficiency/insufficiency. We think that this research could stimulate the discovery of new therapeutic approaches for managing pathologies associated with MMP-2 underactivity. Moreover, similar concepts could apply to other members of the matrix metalloproteinase family.


Assuntos
Doença , Metaloproteinase 2 da Matriz/metabolismo , Animais , Humanos , Metaloproteinase 2 da Matriz/deficiência , Inibidores Teciduais de Metaloproteinases/metabolismo
15.
J Biomed Res ; 33(3): 145-155, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29970623

RESUMO

The breakthrough discovery of cardiac natriuretic peptides provided the first direct demonstration of the connection between the heart and the kidneys for the maintenance of sodium and volume homeostasis in health and disease. Yet, little is still known about how the heart and other organs cross-talk. Here, we review three physiological mechanisms of communication linking the heart to other organs through: i) cardiac natriuretic peptides, ii) the microRNA-208a/mediator complex subunit-13 axis and iii) the matrix metalloproteinase-2 (MMP-2)/C-C motif chemokine ligand-7/cardiac secreted phospholipase A2 (sPLA2) axis - a pathway which likely applies to the many cytokines, which are cleaved and regulated by MMP-2. We also suggest experimental strategies to answer still open questions on the latter pathway. In short, we review evidence showing how the cardiac secretome influences the metabolic and inflammatory status of non-cardiac organs as well as the heart.

16.
Am J Physiol Heart Circ Physiol ; 315(5): H1332-H1340, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118342

RESUMO

Matrix metalloproteinase (MMP)-2 cleaves a broad spectrum of substrates, including extracellular matrix components (responsible for normal tissue remodeling) and cytokines (modulators of the inflammatory response to physiological insults such as tissue damage). MMP-2 expression is elevated in many cardiovascular pathologies (e.g., myocardial infarction, hypertensive heart disease) where tissue remodeling and inflammatory responses are perturbed. Thus, it has generally been assumed that blockade of MMP-2 activity will yield therapeutic effects. Here, we provide a counterargument to this dogma based on 1) preclinical studies on Mmp2-null ( Mmp2-/-) mice and 2) clinical studies on patients with inactivating MMP2 gene mutations. Furthermore, we put forward the hypothesis that, when MMP-2 activity falls below baseline, the bioavailability of proinflammatory cytokines normally cleaved and inactivated by MMP-2 increases, leading to the production of cytokines and cardiac secretion of phospholipase A2 activity into the circulation, which stimulate systemic inflammation that perturbs lipid metabolism in target organs. Finally, we suggest that insufficient understanding of the consequences of MMP-2 deficiency remains a major factor in the failure of MMP-2 inhibitor-based therapeutic approaches. This paucity of knowledge precludes our ability to effectively intervene in cardiovascular and noncardiovascular pathologies at the level of MMP-2.


Assuntos
Doenças Cardiovasculares/enzimologia , Sistema Cardiovascular/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Metaloproteinase 2 da Matriz/deficiência , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos Knockout , Mutação , Fosfolipases A2/metabolismo , Transdução de Sinais , Especificidade por Substrato
17.
Sci Eng Ethics ; 24(2): 805-808, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28444569

RESUMO

The current science publishing system is in need of a positive transformation for the good of scientists and society as a whole. Herein, we propose features that, in our view, will distinguish the science publishing system of the future.


Assuntos
Editoração/organização & administração , Ciência , Humanos , Revisão da Pesquisa por Pares
18.
Sci Rep ; 7(1): 6210, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740132

RESUMO

Tissue inhibitor of metalloproteases (TIMPs) are inhibitors of matrix metalloproteinases (MMPs) that regulate tissue extracellular matrix (ECM) turnover. TIMP4 is highly expressed in adipose tissue, its levels are further elevated following high-fat diet, but its role in obesity is unknown. Eight-week old wild-type (WT) and Timp4-knockout (Timp4 -/-) mice received chow or high fat diet (HFD) for twelve weeks. Timp4 -/- mice exhibited a higher food intake but lower body fat gain. Adipose tissue of Timp4 -/- -HFD mice showed reduced hypertrophy and fibrosis compared to WT-HFD mice. Timp4 -/- -HFD mice were also protected from HFD-induced liver and skeletal muscle triglyceride accumulation and dyslipidemia. Timp4 -/--HFD mice exhibited reduced basic metabolic rate and energy expenditure, but increased respiratory exchange ratio. Increased free fatty acid excretion was detected in Timp4 -/--HFD compared to WT-HFD mice. CD36 protein, the major fatty acid transporter in the small intestine, increased with HFD in WT but not in Timp4 -/- mice, despite a similar rise in Cd36 mRNA in both genotypes. Consistently, HFD increased enterocyte lipid content only in WT but not in Timp4 -/- mice. Our study reveals that absence of TIMP4 can impair lipid absorption and the high fat diet-induced obesity in mice possibly by regulating the proteolytic processing of CD36 protein in the intestinal enterocytes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dislipidemias/etiologia , Fígado Gorduroso/etiologia , Inflamação/etiologia , Lipídeos/fisiologia , Obesidade/etiologia , Inibidores Teciduais de Metaloproteinases/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Antígenos CD36/metabolismo , Dislipidemias/metabolismo , Dislipidemias/patologia , Metabolismo Energético , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Inibidor Tecidual 4 de Metaloproteinase
19.
Compr Physiol ; 6(4): 1935-1949, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27783864

RESUMO

Matrix metalloproteinase-2 (MMP-2) is a 72-kDa zinc- and calcium-dependent endopeptidase with intracellular and extracellular functions ranging from the modulation of extracellular matrix remodeling to cell growth and migration, angiogenesis, inflammation, and metabolism. An upregulation of MMP-2 activity has the potential to deregulate lipid metabolism through the cleavage of numerous metabolic mediators including plasma lipoproteins and cell surface receptors of lipoproteins. Paradoxically, MMP-2 deficiency induces inflammation and deregulates metabolism. Humans and mice with a deficiency in MMP-2 activity share a complex metabolic and inflammatory syndrome including cardiac dysfunction associated with congenital heart defects (in humans) and metabolic disorder (mice), arthritis, loss of bone mass, lipodystrophy, and delayed growth. The etiology of the inflammatory and metabolic syndrome in MMP-2 deficiency is unknown and there is currently no cure for MMP-2 deficiency in patients. Recent research suggests that the pathophysiology of MMP-2 deficiency in mice and humans is influenced by a heart-centric endocrine mechanism signaled by a cardiac-specific secreted phospholipase A2 (cardiac sPLA2), which is released from cardiomyocytes in response to monocyte chemoattractant protein-3, a proinflammatory cytokine normally cleaved and inactivated by MMP-2. This review summarizes many important proteolytic functions of MMP-2 and recapitulates recent reports linking the heart to systemic metabolic control through the MMP-2/cardiac sPLA2 axis. The authors suggest that MMP-2 deficiency should, perhaps, be viewed and treated as an endocrine condition of excess sPLA2, a concept with particular importance for the therapeutic treatment of MMP-2-deficient patients. The possible existence of tissue-specific MMP/cytokine/PLA2 signaling systems is discussed. © 2016 American Physiological Society. Compr Physiol 6:1935-1949, 2016.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Animais , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Metaloproteinase 2 da Matriz/deficiência , Camundongos , Miocárdio/metabolismo , Fosfolipases A2/metabolismo
20.
J Am Heart Assoc ; 5(10)2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27694328

RESUMO

BACKGROUND: The development of atherosclerosis is strongly linked to disorders of cholesterol metabolism. Matrix metalloproteinases (MMPs) are dysregulated in patients and animal models with atherosclerosis. Whether systemic MMP activity influences cholesterol metabolism is unknown. METHODS AND RESULTS: We examined MMP-9-deficient (Mmp9-/-) mice and found them to have abnormal lipid gene transcriptional responses to dietary cholesterol supplementation. As opposed to Mmp9+/+ (wild-type) mice, Mmp9-/- mice failed to decrease the hepatic expression of sterol regulatory element binding protein 2 pathway genes, which control hepatic cholesterol biosynthesis and uptake. Furthermore, Mmp9-/- mice failed to increase the expression of genes encoding the rate-limiting enzymes in biliary cholesterol excretion (eg, Cyp7a and Cyp27a). In contrast, MMP-9 deficiency did not impair intestinal cholesterol absorption, as shown by the 14C-cholesterol and 3H-sitostanol absorption assay. Similar to our earlier study on Mmp2-/- mice, we observed that Mmp9-/- mice had elevated plasma secreted phospholipase A2 activity. Pharmacological inhibition of systemic circulating secreted phospholipase A2 activity (with varespladib) partially normalized the hepatic transcriptional responses to dietary cholesterol in Mmp9-/- mice. Functional studies with mice deficient in other MMPs suggested an important role for the MMP system, as a whole, in modulation of cholesterol metabolism. CONCLUSIONS: Our results show that MMP-9 modulates cholesterol metabolism, at least in part, through a novel MMP-9-plasma secreted phospholipase A2 axis that affects the hepatic transcriptional responses to dietary cholesterol. Furthermore, the data suggest that dysregulation of the MMP system can result in metabolic disorder, which could lead to atherosclerosis and coronary heart disease.


Assuntos
Colesterol/metabolismo , Regulação da Expressão Gênica/genética , Absorção Intestinal/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Metaloproteinase 9 da Matriz/genética , Fosfolipases A2/metabolismo , Acetatos/farmacologia , Animais , Colestanotriol 26-Mono-Oxigenase/efeitos dos fármacos , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol 7-alfa-Hidroxilase/efeitos dos fármacos , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Cetoácidos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Inibidores de Fosfolipase A2/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...