Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(22): 9803-9813, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30155752

RESUMO

Arsenic removal consecutive to biological iron oxidation and precipitation is an effective process for treating As-rich acid mine drainage (AMD). We studied the effect of hydraulic retention time (HRT)-from 74 to 456 min-in a bench-scale bioreactor exploiting such process. The treatment efficiency was monitored during 19 days, and the final mineralogy and bacterial communities of the biogenic precipitates were characterized by X-ray absorption spectroscopy and high-throughput 16S rRNA gene sequencing. The percentage of Fe(II) oxidation (10-47%) and As removal (19-37%) increased with increasing HRT. Arsenic was trapped in the biogenic precipitates as As(III)-bearing schwertmannite and amorphous ferric arsenate, with a decrease of As/Fe ratio with increasing HRT. The bacterial community in the biogenic precipitate was dominated by Fe-oxidizing bacteria whatever the HRT. The proportion of Gallionella and Ferrovum genera shifted from respectively 65 and 12% at low HRT to 23 and 51% at high HRT, in relation with physicochemical changes in the treated water. aioA genes and Thiomonas genus were detected at all HRT although As(III) oxidation was not evidenced. To our knowledge, this is the first evidence of the role of HRT as a driver of bacterial community structure in bioreactors exploiting microbial Fe(II) oxidation for AMD treatment.


Assuntos
Arsênio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Ácidos/química , Ácidos/metabolismo , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Ferro/química , Cinética , Mineração , Oxirredução , Fatores de Tempo , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Appl Microbiol Biotechnol ; 102(5): 2413-2424, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380031

RESUMO

Microbial oxidation of iron (Fe) and arsenic (As) followed by their co-precipitation leads to the natural attenuation of these elements in As-rich acid mine drainage (AMD). The parameters driving the activity and diversity of bacterial communities responsible for this mitigation remain poorly understood. We conducted batch experiments to investigate the effect of temperature (20 vs 35 °C) and nutrient supply on the rate of Fe and As oxidation and precipitation, the bacterial diversity (high-throughput sequencing of 16S rRNA gene), and the As oxidation potential (quantification of aioA gene) in AMD from the Carnoulès mine (France). In batch incubated at 20 °C, the dominance of iron-oxidizing bacteria related to Gallionella spp. was associated with almost complete iron oxidation (98%). However, negligible As oxidation led to the formation of As(III)-rich precipitates. Incubation at 35 °C and nutrient supply both stimulated As oxidation (71-75%), linked to a higher abundance of aioA gene and the dominance of As-oxidizing bacteria related to Thiomonas spp. As a consequence, As(V)-rich precipitates (70-98% of total As) were produced. Our results highlight strong links between indigenous bacterial community composition and iron and arsenic removal efficiency within AMD and provide new insights for the future development of a biological treatment of As-rich AMD.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Ferro/metabolismo , Mineração , Oxirredução , Filogenia , Temperatura , Poluentes Químicos da Água/análise
3.
Front Microbiol ; 9: 3169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627121

RESUMO

Passive treatment based on iron biological oxidation is a promising strategy for Arsenic (As)-rich acid mine drainage (AMD) remediation. In the present study, we characterized by 16S rRNA metabarcoding the bacterial diversity in a field-pilot bioreactor treating extremely As-rich AMD in situ, over a 6 months monitoring period. Inside the bioreactor, the bacterial communities responsible for iron and arsenic removal formed a biofilm ("biogenic precipitate") whose composition varied in time and space. These communities evolved from a structure at first similar to the one of the feed water used as an inoculum to a structure quite similar to the natural biofilm developing in situ in the AMD. Over the monitoring period, iron-oxidizing bacteria always largely dominated the biogenic precipitate, with distinct populations (Gallionella, Ferrovum, Leptospirillum, Acidithiobacillus, Ferritrophicum), whose relative proportions extensively varied among time and space. A spatial structuring was observed inside the trays (arranged in series) composing the bioreactor. This spatial dynamic could be linked to the variation of the physico-chemistry of the AMD water between the raw water entering and the treated water exiting the pilot. According to redundancy analysis (RDA), the following parameters exerted a control on the bacterial communities potentially involved in the water treatment process: dissolved oxygen, temperature, pH, dissolved sulfates, arsenic and Fe(II) concentrations and redox potential. Appreciable arsenite oxidation occurring in the bioreactor could be linked to the stable presence of two distinct monophylogenetic groups of Thiomonas related bacteria. The ubiquity and the physiological diversity of the bacteria identified, as well as the presence of bacteria of biotechnological relevance, suggested that this treatment system could be applied to the treatment of other AMD.

4.
J Hazard Mater ; 321: 764-772, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27720469

RESUMO

Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-AsIII2S3) (33-73%), and realgar (AsIIS) (0-34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound AsIII (14-23%). We propose that the formation of the AsIIS nanowires results from AsIII2S3 reduction by biogenic H2S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.


Assuntos
Arsênio/isolamento & purificação , Resíduos Industriais/análise , Mineração , Bactérias Redutoras de Enxofre/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/isolamento & purificação , Arsenicais/química , Arsenicais/isolamento & purificação , Biodegradação Ambiental , Descontaminação , Desulfovibrio , Concentração de Íons de Hidrogênio , Nanofios , Sulfetos/química , Sulfetos/isolamento & purificação , Poluentes Químicos da Água/química , Difração de Raios X , Compostos de Zinco/química , Compostos de Zinco/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...