Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 7(23): 19579-19590, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722021

RESUMO

Starch and its derivatives have recently emerged as a sustainable and renewable alternative for petroleum-based expanded polystyrene (EPS) and expanded polypropylene (EPP) foam materials. In this study, biodegradable foam materials were prepared from cassava starch using a novel dual modification technique, combining microwave treatment and freeze-drying. The foam materials were prepared from starch solutions microwaved over different intervals. The starch-based foam materials were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), 13C nuclear magnetic resonance (13C-NMR) spectroscopy, and compression set test. Moreover, the water absorption capacities and density values of the foam materials were measured according to ASTM standards. The biodegradability test was carried out according to the aerobic compost environment test. The lowest water absorption capacities of 65.56% and 70.83% were exhibited for the cassava starch foam sample (MWB) prepared at a 20 s microwave treatment time and immersed in distilled water for 2 and 24 h, respectively. Furthermore, the lightweight cassava starch-based foam materials displayed density ranging from 124 to 245 kg/m3. The biodegradation test exhibited significant biodegradation of over 50% after 15 days for all the foam materials prepared. These results suggest that the dual-modified cassava starch-based biodegradable foams show potential in sustainable packaging applications by replacing petroleum-based materials.

2.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833972

RESUMO

Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity. Therefore, native starch needs to be modified before its use. Major starch modification techniques include genetic, enzymatic, physical, and chemical. Among those, chemical modification techniques are widely employed in industries. This review presents comprehensive coverage of chemical starch modification techniques and genetic, enzymatic, and physical methods developed over the past few years. In addition, the current applications of chemically modified starch in the fields of packaging, adhesives, pharmaceuticals, agriculture, superabsorbent and wastewater treatment have also been discussed.


Assuntos
Plantas/química , Amido/química , Biocatálise , Biotecnologia , Reagentes de Ligações Cruzadas/química , Esterificação , Engenharia Genética , Hidrólise , Plantas/genética , Amido/genética
3.
Recent Pat Nanotechnol ; 14(4): 307-327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32532198

RESUMO

BACKGROUND: Technology experts foresee that nanotechnology is the next industrial revolution and it has great potential to bring solutions to many challenges of global relevance in terms of a diverse range of applications. Efficiency-driven economies are transforming into innovation-driven economies where Intellectual Property (IP) plays a pivotal role in achieving a competitive advantage. Whereas industry analysts assert that IP roadblocks will be a severe detriment to the development of nanotechnology due to infringements and high-profile patent battles. Various authors have made a significant effort to analyse the implications of IP on nanotechnology but most of the published literature covers only the years 2000- 2010. Data and insights pertaining to recent developments are lagging behind. Therefore, the objective of this review was to explore cutting-edge empirical evidence towards emerging trends of Intellectual Property protection in nanotechnology, thereby to provide insights aimed at unleashing the full potential of nanotechnology innovation for socio-economic advantage. MATERIALS AND METHODS: Patent information over the period 2000 to 2018 was collated and analysed to determine the latest trends. To gain a global perspective, nanotechnology patents issued by the United States Patent and Trademark Office (USPTO) and nanotechnology patents published in the 'PatentScope' of the World Intellectual Property Organization (WIPO) were surveyed along with literature in relation to nanotechnology commercialization and litigation. RESULTS: Our study revealed that worldwide protection of Intellectual Property in nanotechnology has steadily been increasing year-on-year accounting 3.3 million patent applications filed in 2018 in which China and U.S. are dominating. The other main contributors are Japan, Germany Republic of Korea, France and U.K. Asia has emerged as the single region to file more than half of total filings for the first time thus shifting global IP landscape from Europe to Asia. Another notable finding is that there is a significant growth in trademark registration in many of the leading economies. Top five technology fields with high international patenting activity are computer technology, medical technology, digital communication, electrical machinery and pharmaceuticals where computer technology is dominating. More than 90% of the total patents are granted on materials, devices and processes developed as basic building blocks of nanotechnology at laboratory level which sound as more downstream innovations in the short-term. Amid the upward trends in nanotechnology patenting, newly emerging obstacles pose risks to innovation. A key finding of the present study is that the increasing trend of patent litigation almost follows the same path of patent grants indicating a positive correlation. A global prominence of middle-income and low-income countries in patent filing is yet to emerge which foreshadows an IP divide. DISCUSSIONS: A secondary market for patent assets is pronounced with many new types of players leading to a high cost of patenting nanotechnology. These trends foreshadow a surge of patent filings in the years to come and.the patent offices will be confronted with that 'surge' of patent applications of increased complexity and multidisciplinary nature..Patent offices with inadequate efficacy will ultimately produce lowquality patents along with a difficulty to enter into markets and will facilitate exploiting of the IP legal systems to extract rewards for infringement without contributing to innovation or social prosperity of nations. CONCLUSION: Insights and recommendations given in this paper will enable nanotechnology researchers, inventors, technopreneurs and investors to understand recent trends and global perspectives on implications of IP in nanotechnology and intensifying IP battle thereby to contemplate and succeed in their roadmaps towards leveraging on nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...