Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377664

RESUMO

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, ß-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1ß in response to ß-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1ß and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1ß-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.


Assuntos
Feoifomicose , beta-Glucanas , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Lectinas Tipo C/genética , Macrófagos/metabolismo , Feoifomicose/microbiologia , Fator de Necrose Tumoral alfa/genética
2.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167497

RESUMO

Targeted monoclonal antibody (mAb) therapies show great promise for the treatment of transplant rejection and autoimmune diseases by inducing more specific immunomodulatory effects than broadly immunosuppressive drugs routinely used. We recently described the therapeutic advantage of targeting CD45RC, expressed at high levels by conventional T (Tconv) cells (CD45RChi), their precursors, and terminally differentiated T (TEMRA) cells, but not by regulatory T cells (Tregs; CD45RClo/-). We demonstrated efficacy of anti-CD45RC mAb treatment in transplantation, but its potential has not been examined in autoimmune diseases. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare genetic syndrome caused by loss-of-function mutations of autoimmune regulator (AIRE), a key central tolerance mediator, leading to abnormal autoreactive T cell responses and autoantibody production. Herein, we show that, in a rat model of APECED syndrome, anti-CD45RC mAb was effective for both prevention and treatment of autoimmune manifestations and inhibited autoantibody development. Anti-CD45RC mAb intervention depleted CD45RChi T cells, inhibited CD45RChi B cells, and restored the Treg/Tconv cell ratio and the altered Treg transcriptomic profile. In APECED patients, CD45RC was significantly increased in peripheral blood T cells, and lesioned organs from APECED patients were infiltrated by CD45RChi cells. Our observations highlight the potential role for CD45RChi cells in the pathogenesis of experimental and human APECED syndrome and the potential of anti-CD45RC antibody treatment.


Assuntos
Doenças Autoimunes , Poliendocrinopatias Autoimunes , Animais , Autoanticorpos , Humanos , Imunoterapia , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/terapia , Ratos , Linfócitos T Reguladores
3.
Elife ; 92020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410729

RESUMO

The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.


The immune system uses antibodies to fight microbes that cause disease. White blood cells pump antibodies into the bloodstream, and these antibodies latch onto bacteria and viruses, targeting them for destruction. But sometimes, the immune system gets it wrong. In autoimmune diseases, white blood cells mistakenly make antibodies that target the body's own tissues. Detecting these 'autoantibodies' in the blood can help doctors to diagnose autoimmune diseases. But the identities and targets of many autoantibodies remain unknown. In one rare disease, called autoimmune polyendocrine syndrome type 1 (APS-1), a faulty gene makes the immune system much more likely to make autoantibodies. People with this disease can develop an autoimmune response against many different healthy organs. Although APS-1 is rare, some of the autoantibodies made by individuals with the disease are the same as the ones in more common autoimmune diseases, like type 1 diabetes. Therefore, investigating the other autoantibodies produced by individuals with APS-1 could reveal the autoantibodies driving other autoimmune diseases. Autoantibodies bind to specific regions of healthy proteins, and one way to identify them is to use hundreds of thousands of tiny viruses in a technique called proteome-wide programmable phage-display, or PhIP-Seq. Each phage carries one type of protein segment. When mixed with blood serum from a patient, the autoantibodies stick to the phages that carry the target proteins for that autoantibody. These complexes can be isolated using biochemical techniques. Sequencing the genes of these phages then reveals the identity of the autoantibodies' targets. Using this technique, Vazquez et al successfully pulled 23 known autoantibodies from the serum of patients with APS-1. Then, experiments to search for new targets began. This revealed many new autoantibodies, targeting proteins found only in specific tissues. They included one that targets a protein found on cells in the gut, and another that targets a protein found on egg cells in the ovaries. Matching the PhIP-Seq data to patient symptoms confirmed that these new antibodies correlate with the features of specific autoimmune diseases. For example, patients with antibodies that targeted the gut protein were more likely to have gut symptoms, while patients with antibodies that targeted the egg cell protein were more likely to have problems with their ovaries. Further investigations using PhIP-Seq could reveal the identities of even more autoantibodies. This might pave the way for new antibody tests to diagnose autoimmune diseases and identify tissues at risk of damage. This could be useful not only for people with APS-1, but also for more common autoimmune diseases that target the same organs.


Assuntos
Autoanticorpos/sangue , Autoantígenos/sangue , Autoimunidade , Técnicas de Visualização da Superfície Celular , Poliendocrinopatias Autoimunes/sangue , Proteoma , Proteômica , Fosfatase Ácida/sangue , Fosfatase Ácida/imunologia , Autoantígenos/imunologia , Biomarcadores/sangue , Feminino , Células HEK293 , Humanos , Masculino , Biblioteca de Peptídeos , Poliendocrinopatias Autoimunes/diagnóstico , Poliendocrinopatias Autoimunes/imunologia , Proteínas/imunologia , Fatores de Transcrição de Fator Regulador X/sangue , Fatores de Transcrição de Fator Regulador X/imunologia
4.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415879

RESUMO

Several reports have demonstrated that mouse Cx3cr1 signaling promotes monocyte/macrophage survival. In agreement, we previously found that, in a mouse model of systemic candidiasis, genetic deficiency of Cx3cr1 resulted in increased mortality and impaired tissue fungal clearance associated with decreased macrophage survival. We translated this finding by showing that the dysfunctional CX3CR1 variant CX3CR1-M280 was associated with increased risk and worse outcome of human systemic candidiasis. However, the impact of this mutation on human monocyte/macrophage survival is poorly understood. Herein, we hypothesized that CX3CR1-M280 impairs human monocyte survival. We identified WT (CX3CR1-WT/WT), CX3CR1-WT/M280 heterozygous, and CX3CR1-M280/M280 homozygous healthy donors of European descent, and we show that CX3CL1 rescues serum starvation-induced cell death in CX3CR1-WT/WT and CX3CR1-WT/M280 but not in CX3CR1-M280/M280 monocytes. CX3CL1-induced survival of CX3CR1-WT/WT monocytes is mediated via AKT and ERK activation, which are both impaired in CX3CR1-M280/M280 monocytes, associated with decreased blood monocyte counts in CX3CR1-M280/M280 donors at steady state. Instead, CX3CR1-M280/M280 does not affect monocyte CX3CR1 surface expression or innate immune effector functions. Together, we show that homozygocity of the M280 polymorphism in CX3CR1 is a potentially novel population-based genetic factor that influences human monocyte signaling.


Assuntos
Receptor 1 de Quimiocina CX3C/genética , Sobrevivência Celular/genética , Monócitos/fisiologia , Apoptose/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/imunologia , Células Cultivadas , Quimiocina CX3CL1/imunologia , Quimiocina CX3CL1/metabolismo , Meios de Cultura Livres de Soro , Voluntários Saudáveis , Homozigoto , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...