Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 5: 1231371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37712007

RESUMO

Sport performance coaches use a range of modalities to apply a horizontal force (Fh) to athletes during resisted sprint training (RST). These modalities include parachutes, weighted vests, pulley devices, motored tethered devices, and, most notably, weighted sleds. Despite the widespread use of these devices, the resistance forces of the pulley devices have not been evaluated for reliability and accuracy. Therefore, the primary aim of this study is to quantify the Fh of a commercially available pulley device (EXER-GENIE®) and determine how resistance force is related to the load settings on the device. The secondary aim is to identify the differences in the Fh values between three EXER-GENIE® devices that use 36 m and 60 m ropes. The Fh values in the Newtons (N) of the three EXER-GENIE® devices were analyzed using a motorized winch, a lead acid battery, and an S-beam load cell. Four 10 s winch-driven trials were performed using 15 different EXER-GENIE® loads, ranging from 0.028 kg to 3.628 kg, employing two different 36 m devices and one 60 m device. The mean ± standard deviation for Fh was reported across the four trials for each load setting. All devices produced similar Fh values across lighter load settings (loads ≤0.141 kg). However, at heavier loads (loads ≥0.226 kg), the 60 m device had Fh values 50-85 N greater than those of the 36 m device. The coefficient of variation across the four trials was extremely high at light loads but sharply decreased to <10% at heavy loads. Absolute reliability was high for each device [intraclass correlation coefficient (ICC) = 0.99]. A regression analysis for Fh values and EXER-GENIE® load indicated a strong positive relationship between load and Fh values across all devices (R2 = 0.96-0.99). Caution should be exercised when using identical loads on the different-length pulley devices, as the 60 m device produced greater Fh values than the 36 m devices at load settings higher than 0.226 kg. These results can provide coaches and practitioners with a better understanding of the magnitude of resistance that is applied when prescribing EXER-GENIE® devices for higher training loads.

2.
Sports (Basel) ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447867

RESUMO

This study examined the level of agreement (Pearson product-moment correlation [rP]), within- and between-day reliability (intraclass correlation coefficient [ICC]), and minimal detectable change of the MusclelabTM Laser Speed (MLS) device on sprint time and force−velocity−power profiles in Division II Collegiate athletes. Twenty-two athletes (soccer = 17, basketball = 2, volleyball = 3; 20.1 ± 1.5 y; 1.71 ± 0.11 m; 70.7 ± 12.5 kg) performed three 30-m (m) sprints on two separate occasions (seven days apart). Six time splits (5, 10, 15, 20, 25, and 30 m), horizontal force (HZT F0; N∙kg−1), peak velocity (VMAX; m∙s−1), horizontal power (HZT P0; W∙kg−1), and force−velocity slope (SFV; N·s·m−1·kg−1) were measured. Sprint data for the MLS were compared to the previously validated MySprint (MySp) app to assess for level of agreement. The MLS reported good to excellent reliability for within- and between-day trials (ICC = 0.69−0.98, ICC = 0.77−0.98, respectively). Despite a low level of agreement with HZT F0 (rP = 0.44), the MLS had moderate to excellent agreement across nine variables (rp = 0.68−0.98). Bland−Altman plots displayed significant proportional bias for VMAX (mean difference = 0.31 m∙s−1, MLS < MySp). Overall, the MLS is in agreement with the MySp app and is a reliable device for assessing sprint times, VMAX, HZT P0, and SFV. Proportional bias should be considered for VMAX when comparing the MLS to the MySp app.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...